


A phase III clinical trial is a randomized prospective con-
trolled study designed to compare the efficacy of two
or more regimens for the treatment of a specified disease
or medical condition. These trials employ accepted sci-
entific principles of good experimental design including,
among other things, specification of eligibility criteria
(types of patients appropriate for study), explicit state-
ments of primary and secondary objectives, details of the
treatment regimens to be compared, and statistical con-
siderations (hypotheses tested, sample size and expected
duration of the trial, statistical procedures, interim
analysis plans, and related topics). A properly designed
and executed phase III clinical trial provides the best
available scientific evidence on the relative efficacy of the
treatments being studied and the most reliable informa-
tion for evidence-based medicine.

The adoption and wide-spread use of phase III
clinical trials in the latter half of the twentieth century
and the early twenty-first century represents one of the
more important contributions to the practice of scien-
tific medicine during the last 60 years. The statistical
aspects of the design, conduct, and analysis of clinical
trials have been extensively studied during this time and
there are now many textbooks (including this one) cov-
ering this material at various levels of statistical sophis-
tication. Other chapters in the current text cover
important topics in the design and analysis of phase III
clinical trials, including selecting endpoints, random-
ization and stratification, interim analysis, adaptive

design, and Bayesian designs. The focus in the present
chapter will be on determining the required sample size
(number of patients or number of events) and duration
of a phase III clinical trial in many commonly encoun-
tered practical situations (1, 2). In an attempt to pro-
vide maximum clarity for the underlying concepts, free
of unnecessary complexity, the situations considered are
elementary ones. References to papers covering more
complex scenarios are provided where appropriate.

CANONICAL SAMPLE SIZE FORMULAE

Testing Hypotheses

The sample size considerations in this chapter are
derived from a statistical hypothesis testing perspective,
usually involving a test of a null hypothesis, H0, against
an alternative hypothesis, H1. In the simplest case, sup-
pose the outcome variable (endpoint) of a clinical trial
comparing two treatments is some continuous random
variable, X, and we wish to compare the mean value of
X for the two treatments. The usual null and alterna-
tive hypotheses in this case may be expressed as

H0 : m1 = m2
vs.

H1 : m1 ≠ m2

where mi is the mean for treatment i (= 1, 2).
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The statistical inference in this case is a decision
rule, based on the observed values of X in the two treat-
ment groups, for deciding between the two competing
hypotheses. In the standard statistical approach, the
trial is designed to control the rates for the two possi-
ble types of error:

· Type I—rejecting H0 (in favor of H1) when H0 is true

· Type II—not rejecting H0 when H1 is true

The error rates for these two types of errors are conven-
tionally denoted by a and b, respectively, with the power
of the test defined as 1—b, the complement of the type
II error rate. That is, the power of the test is the proba-
bility of correctly rejecting H0 when H1 is true. The usual
approach to determining the required sample size is to
set the type I error rate a at some acceptable level, often
0.05 or 0.01, and then to find the minimum required
sample size to achieve a power of at least some specified
value 1—b, often 0.80 or 0.90, at some specified alter-
native value (i.e., some particular value in the alterna-
tive hypothesis space when H1 is a composite space).

Suppose (for simplicity) that the endpoint Xi in
the ith treatment group (i = 1, 2) has a normal statisti-
cal distribution with mean mi and known variance s 2,
denoted, Xi ∼ N (mi, s

2), and we plan to enter an equal
number of patients, n, on each treatment. In this case,
the usual test statistic, Z, used in testing H0 versus H1
may be written as:

where 
–
Xi is the sample mean of X in the ith treatment

group. The hypothesis H0 : m1 = m2 is rejected in favor
of H1 : m1 ≠ m2 if Z ≥ za /2, where zx is the upper 100 
(1 – x) percentile of the standard normal distribution.
To determine the required common sample size, we
need to solve the following equation for n:

where P(X⎪Y) denotes the probability of X given Y and 
d = m1– m2 ≠ 0 is some prespecified value in the alterna-
tive hypothesis space. That is, we want the power to
be at least 1—b when the true difference between the
means is d. Some straight-forward algebraic manipula-
tion of (11-3) yields the following sample size formula
for the approximate number of patients, n, required on
each treatment group:
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where [x] denotes the smallest integer ≥ x. Equation
(11-4) is the canonical sample size formula for the
hypothesis-testing scenario considered here. If the vari-
ances in the two groups are not equal, the formula
becomes

These formulae can also be used to determine the power
for a given sample size by solving for zbwhen n is given.

Although the above formulae are strictly applica-
ble only for the assumptions underlying their deriva-
tion, they are approximately correct in many other
settings. Often the test statistic or some simple trans-
formation of the test statistic is approximately normally
distributed for reasonably large sample sizes. Also, the
formulae nicely illustrate several general points about
the required sample size in phase III clinical trials:

·The required sample size n increases as the variance
s 2 increases. The size of s 2 is a feature of the pop-
ulation under study.

·The required sample size n increases as the error
rates decrease. For example, an increase in power
(decrease in b) requires an increase in sample size.

·The required sample size n increases as the
detectable effect size d decreases.

The required sample size calculated from (11-4) for
some common values of a and b as a function of the
standardized effect size, d /s, is given in Table 11.1. If
the variances are not equal, the standardized effect size

may be defined as d /s
_  

where .

For example, if a = 0.05, 1—b = 0.90, and d /s = 0.50,
the number of patients required on each treatment is
n = 85 and the total required sample size is 2n = 170.

Unknown Variances

If we relax the assumption that sigma is known, the
appropriate test statistic is not (11-2) but the t-statistic

where s is the pooled estimate of the common, but
unknown, standard deviation s. In this case, a good
approximation (3) to the required sample size n* is:
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(Eqn. 11-2),

(Eqn. 11-3),

(Eqn. 11-4),

(Eqn. 11-5),

(Eqn. 11-6),

(Eqn. 11-7),
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entered on treatment 1 than on treatment 2), we would
require (2n)(9/8) patients, a 12.5% increase over the
2n required in the balanced case. However, there may
be other reasons for an unbalanced randomization
(such as wanting more patients on one of the treat-
ments to increase the precision of the estimated out-
comes for that treatment). If so, an unbalanced
allocation might be preferable to a balanced one even
with the resultant sample size inflation factor.

More Than Two Treatment Groups

In many phase III clinical trials there are k > 2 treatments
(4). Unfortunately, in order to control the error rates in
this setting, the above sample size formulae cannot be
extended simply by entering n patients on each of the k
treatments (a total of kn patients). More than kn patients
are required. Three important types of phase III clinical
trials with more than two arms are considered below.

Testing Equality Among k Treatment Arms. In
the simplest type of k arm clinical trial, there is a
randomization to one of the k arms and the primary
objective is to test a global null hypothesis. With an
obvious extension of the notation in (11-1), the
hypotheses being tested are

H0 : m1 = m2 = . . . = mk
vs.

H1 : mi ≠ mj for some i ≠ j

If s 2 is known then the test statistic, analogous
to (11-2) in the two-sample case, is

where –xi is the sample mean in the ith treatment arm
and x– is the overall sample mean. The hypothesis 
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where, as before, [x] is the smallest integer ≥ x and n
is defined in (11.4). Although n* is always greater than
n, the difference is not large. For example, n*− n = 1
when a = 0.05 and n*− n = 2 when a = 0.01. Thus, in
most practical situations, the required number of
patients when the variance is unknown is only one or
two more patients per treatment group than the num-
ber required when the variance is known.

Unequal Sample Sizes

To allow for different sample sizes ni on the two arms,
(11-4) may be written as:

Any pair of values (n1, n2) that satisfy (11-8) will work.
However, the required total sample size, n1 + n2, is min-
imized when n1 = n2. If we randomize patients to the
two treatments in the ratio r:1, for some r > 1, rather
than in the usual balanced 1:1 ratio (i.e., n1 = rn2), the
required sample sizes are

and the required total sample size is approximately

where n is determined by (11-4). The inflation factor
of (r +1)2/4r in the required total number of patients is
the primary reason that balanced randomization is gen-
erally preferred to unbalanced randomization. For
example, if r = 2 (i.e., twice as many patients are

n n n r r1 2

2
2 4+ +1= ( )

n
r

r
n2 2

= ⎡
⎣⎢

⎤
⎦⎥

+1

n
r

n1 2
= ⎡

⎣⎢
⎤
⎦⎥

+1

1 1

1 2

1 2 2

n n

z z
+

+
2

⎛
⎝⎜

⎞
⎠⎟

=
( )⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

− σ

δ
α β/2

TABLE 11.1
Required Sample Size on Each Treatment Arm to Test H0 : μ1 = μ2 vs. H0 : μ1 ≠ μ2.

d/s

a 1—b 0.10 0.25 0.50 0.75 1.00

0.01 0.80 2336 374 94 42 24
0.90 2976 477 120 53 30

0.05 0.80 1570 252 63 28 16
0.90 2102 337 85 38 22

(Eqn. 11-11),

(Eqn. 11-8),

(Eqn. 11-9),

(Eqn. 11-10),

(Eqn. 11-12),



H0 is rejected in favor of H1 if X2 > χ2
a,k–1, the upper

100(1–α) percentile of a chi-square distribution with
k – 1 degrees of freedom. To determine the required
sample size we need to solve an equation similar in
form to (11-3):

where . When Δ ≠ 0,

X2 has a noncentral chi-square distribution with non-
centrality parameter nΔ and no closed-form solution
for n exists analogous to (11-4). However, solutions are
easily available either from computer programs or from
tables of the noncentral chi-square distribution. As
noted previously, the required sample size per treat-
ment arm for k > 2 will be larger than that required
when k = 2, increasing as a function of k. Table 11.2
gives the multiplication factor required for k = 3, 4, 5,
and 6 when all means other than the largest and small-
est are midway between the largest and smallest.

For example, the number of patients required for
k = 3 is 1.23n per arm (i.e., 23% more patients on each
arm) when a = 0.05, 1—b = 0.80. For k = 4, 5, and 6,
the requirements are 1.39n, 1.52n, and 1.63n, respec-
tively. Although Table 11.2 represents the worst-case
scenario, the one with the least favorable configuration
of mean values between the two extreme means, there
is generally a high price to be paid for increasing the
number of treatment arms on a clinical trial.

Two or More Experimental Arms and a Control
Arm. Another common k-arm design results when
we wish to compare k—1 new or experimental arms
with a standard or control with randomization of
each patient to one of the k arms. In this case, there
are k—1 comparisons of interest. If we let arm 1 be
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the control arm and define , then a

simple, albeit conservative, approach in this setting is
to apply equation (11-4), substituting α/2(k—1) for
α/2 and δ* for δ. This approach ensures that a
sufficient number of patients are entered to achieve
the requisite power for all comparisons, allowing for
the multiple comparisons.

A better approach, requiring fewer patients, is to
adjust for the inherent multiplicity using a less conser-
vative multiple comparison procedure (5–7). Jung et al.
(8) use a Dunnett-type procedure for this purpose in
the setting of survival distributions (see the “Compar-
ing Survival Distributions” section later in the chapter
for more details on survival endpoints).

Factorial Designs. In a factorial design there are
several factors (or treatment types in a clinical trial) to
be tested in combination (9). In the simplest type of
factorial design, referred to as a 2 × 2 design, there are
two treatments, each given at one of two levels. For
example, the treatments might refer to particular
therapeutic agents (say, A and B) and the two levels
might refer to the presence or absence of a specified
regimen for the agent. The four possible combined
treatment regimens are: A and B absent; A absent and
B present; A present and B absent; A and B both
present. In general, with two factors we could define
a R × C factorial design, with R levels of one factor
and C levels of the other factor, although in clinical
applications it would be rare for R or C to exceed
three. A 2 × 2 design is by far the most common
factorial design.

In a factorial design it is possible to compare the
effects of each of the treatments separately as well as
to estimate the interaction effects among treatments.
An interaction implies that the effect of a treatment
depends on the presence or absence of another treat-
ment. To make this point clear, consider a 2 × 2 design
with two treatments either present or absent. The mean
values in each of the four possible treatment combina-
tions are given in Table 11.3.

The treatment effects in Table 11.3 are the differ-
ences in mean values when the treatment is given com-
pared to when it is not given. The quantity ε measures
the interaction between treatments. If e = 0, the effect
of treatment A is δ0 regardless of whether treatment B
is given or not, and the effect of treatment B is δ1 regard-
less of whether treatment A is given or not. If e > 0 (a
positive interaction), there is synergy between the treat-
ments; the effect of each treatment is increased in the
presence of the other. If e < 0 (a negative interaction),
there is antagonism between the treatments; the effect of
each treatment is decreased by the presence of the other.

δ μ μ*

,...,
min= −{ }
=i k i2 1
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TABLE 11.2
Multiplication Factors for the Number of

Patients Required for k > 2 Treatment Arms.

k = NUMBER OF ARMS

a 1—b 3 4 5 6

0.01 0.80 1.19 1.32 1.43 1.53
0.90 1.17 1.29 1.39 1.48

0.05 0.80 1.23 1.39 1.52 1.63
0.90 1.20 1.35 1.47 1.57

(Eqn. 11-13),



If one can assume that ε ≅ 0, then a factorial
design is highly efficient. One can design the trial to test
the effect of treatment A or B without consideration
of the other treatment and get “two trials for the price
of one.” If nA and nB are the required sample sizes for
the two individual trials, then a single factorial trial of
size  n = max {nA,nB} will achieve at least the same
power for each individual treatment comparison as two
trials with total sample size of nA + nB. In fact, the
power will be greater than required for the comparison
with the smaller required ni. However, if e < 0, the
power of the individual comparisons may be consid-
erably less than that when there is no interaction. To
allow for this possibility, one option is to assume a
slight negative interaction in the design of the trial and
increase the size of the trial accordingly. Unfortunately,
if one wishes to test formally for interactions, the
required size of the trial will be quite large, counter-
acting one of the primary advantages of a factorial
design (9). It would also be possible to consider the trial
as if it were a trial with k = RC treatments and use the
approach outlined above for k treatment arms. How-
ever, this approach also can result in a very large trial,
and in any case does not take advantage of the unique
structure of the factorial design.

Factorial clinical trials can play an important role
in evaluating therapies, especially in a setting where treat-
ments are likely to be used in combination in practice.
Indeed, such trials are essential to learn about the joint
effects of treatments. However, if the treatment combi-
nations are not likely to be used in practice, factorial
designs are not appropriate because of the potential for
negative interactions and the resultant loss of power.

COMPARING SUCCESS RATES

If the assumptions underlying the above derivations are
approximately correct, the resultant sample size formu-
lae can in principle be used directly. However, it is often
necessary to consider modifications of the approach
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when designing actual clinical trials. One such situation
requiring special consideration concerns trials in which
the outcome measure is a binary variable. Such trials are
considered in this section. Another important special
case, trials in which the outcome measure is time to some
event, is considered in the subsequent section.

In some phase III clinical trials the outcome on
each patient is assessed as a success or a failure and
the objective of the trial is to compare the success rates
of the treatments under study. For example, a success
might be defined as achieving a particular clinical sta-
tus, perhaps achieving an objective response or remain-
ing disease free for some specified time period. In these
cases, the observed success rate on treatment i will have
a binomial distribution with a mean pi, the unknown
probability of success, and variance pi (1 – pi)/n. The
hypotheses equivalent to those in (11-1) are

H0 : p1 = p2
vs.

H1 : p1 = p2

Even though the binomial distribution is not a normal
distribution, for large samples a normal approximation
is reasonable and one may use equation (11-5) directly
with δ = p1 – p2 and si

2 = pi(1 – pi). That is, 

(Eqn. 11-15),

A second approach is to apply the variance-stabilizing

transformation arcsin to the observed propor-
tion of success x/n. This approach yields

(Eqn. 11-16),
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TABLE 11.3
Treatment Effects in a 2 × 2 Factorial Clinical Trial.

TREATMENT B

ABSENT PRESENT TREATMENT B EFFECT

Treatment A absent m m + d1 d1
present m + d0 m + d0 + d1 + e d1 + e

Treatment A effect d0 d0 + e

(Eqn. 11-14),



A third approach, also based on the approximate nor-
mality of the sample proportions (10), yields

(Eqn. 11-17),

Haseman (11) showed that all of the above for-
mulae result in values that are too small when the
actual test being used is an exact test. Casagrande et al.
(12) provided an improved formula in this setting and
Fleiss et al (13) showed that a better approximation
results from a simple modification to (11-17):

(Eqn. 11-18),

Table 11.4 gives the required sample sizes based on 
(11-18) for some selected cases.

COMPARING SURVIVAL DISTRIBUTIONS

When the hypotheses being tested involve time-to-
event, or survival data, several complications arise. The
most important one is that the observations may be
incomplete (or censored) at the time of the analysis,
either because of dropouts or loss to follow-up or
because the event in question (recurrence, progression,
death, etc.) has not yet occurred for some patients. Cen-
soring affects both the number of patients that need
to be enrolled on trial as well as the required duration
of trial. For reasons that will be made clearer below,
the number of events, rather than the number of
patients on trial, is the key quantity to be determined
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and the duration of the trial must be planned to achieve
the desired number of events. There has been a vast
literature on the design of clinical trials with survival
as the major endpoint (8, 14–32), mostly at a more
advanced statistical level than the level of this chapter.

Required Number of Events

For a random variable T representing the time to some
event, the key probability functions are the survival
distribution or probability of surviving beyond time t,
S(t) = P(T > t), and the hazard function l(t) = f(t)/S(t),
where f(t) is the probability density function. The haz-
ard function may be thought of as the instantaneous
failure rate at time t for a patient who has survived up
to time t. Each function may be derived from the other
if the other is fully specified. The simplest type of sur-
vival distribution is the exponential distribution, for
which the hazard function is constant over time.

George and Desu (15) provided a framework for
determining both the required number of events and
the required duration of study when the survival dis-
tributions under study follow an exponential distribu-
tion. In this case, the survival function, the probability
of surviving beyond time t, is Si(t) = exp(–lit) in the ith
treatment group, where li is the hazard rate in the ith
treatment group. The hypotheses being tested, analo-
gous to those in equation (11-1), are

H0 : l1 = l2

vs.
H1 : l1 ≠ l2

Or equivalently, in terms of the hazard ratio, Δ = l1/l2,

H0 : Δ = 1
vs.

H1 : Δ ≠ 1

88

TABLE 11.4
Number of Patients on Each of Two Treatments to Compare Success 

Rates (a = 0.05, 1–b = 0.80).

d = p2—p1

P1 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.10 725 219 113 72 51 38 30 25
0.20 1134 313 151 91 62 45 35 28
0.30 1416 376 176 103 68 49 37 29
0.40 1573 408 186 107 70 49 36 28
0.50 1605 408 183 103 66 45 33 25

(Eqn. 11-19),

(Eqn. 11-20),



The ratio of the estimated hazard rates has an F
distribution, so the required sample size can in principle
be derived by solving an equation analogous to (11-3)
for the F distribution. But these equations do not yield
a closed form expression for the sample size. A much
simpler and quite accurate approximation for a rea-
sonably large number of events is based on the approx-
imate normality of the natural logarithm of the
estimated hazard rate in each treatment group:

where di is the number of observed events. Thus, the
distribution of the log of the estimated hazard ratio can
be approximated as:

The required number of events on the ith treatment
group, di, can be obtained from the following equation,
directly analogous to equation (11-8):

where Δ0 ≠ 1 is the specified hazard ratio for which
we desire the power of the test to be1 – b . Table 11.5
gives values of d1 + d2, for some common design sit-
uations. Here we assume d1 ≅ d2, yielding the mini-
mum required total number of events. If the di are
expected to differ substantially, an inflation factor
similar to equation (11-10) should be applied.

The exponential assumption is not as restrictive
as it might first appear since the calculations are
approximately correct for the general proportional haz-
ards case, in which the ratio of the hazard functions is
independent of time, even though the individual haz-
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ards are not. The log-rank statistic is available as the
score statistic from the maximum likelihood fitting of
the proportional hazards model (33). Schoenfeld (34)
showed that the method of George and Desu approx-
imates the power of the log-rank test as long as the
assumption of proportional hazards holds. Rubinstein
et al. (19) show via simulations that trial lengths cal-
culated using the statistic of George and Desu and
assuming exponential failure times give valid powers
for the log-rank test when the underlying survival dis-
tributions are exponential and Weibull. Under a pro-
portional hazards model, the distribution of the log of
the estimated hazard ratio,  ̂Δ, can be approximated by
the same approximate normal distribution as in the
exponential case. Thus, although the exponential dis-
tribution represents a simple special case of propor-
tional hazards, the required number of events defined
by (11-21) applies directly to the more general
proportional hazards case. A more precise formulation
is given in two papers by Lakatos (24, 26). If the pro-
portional hazards assumption is not correct, the sam-
ple size formulae based on the assumption can produce
erroneous results (27).

Required Duration of Study

The sample size approximation formula (11-21) and the
tabulated values in Table 11.5 are for the required num-
ber of events at the time of the final analysis. In order
to observe the requisite number of events, it is neces-
sary to follow patients over time until the events are
observed. At one extreme, we could enter exactly 2d
patients on trial and follow all until failure; at the other
extreme, we could enter patients continuously until 2d
patients have failed. The former approach will require
the maximum duration of study; the latter will yield the
shortest duration of study but at the cost of entering the
maximum number of patients. Either approach will yield
the requisite power. However, some intermediate
approach would be more appropriate in most cases.
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TABLE 11.5
Total Number of Events Required to Compare Two Survival Distributions.

= HAZARD RATIO

a 1—a 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50

0.01 0.80 4209 1769 939 565 368 252 180 131 98
0.90 5362 2254 1196 720 468 321 229 167 124

0.05 0.80 2829 1189 631 380 247 170 121 98 66
0.90 3787 1592 845 508 331 227 162 118 88

∇

(Eqn. 11-21),



We assume that we will enter a sufficient number
of patients (at least 2d) on study during some accrual
period, each randomized to one of the two treatment
arms. After this accrual period, there will be an addi-
tional follow-up period (T, T + τ) for all patients who
have not failed before T in order to obtain the neces-
sary 2d events. It is shown in George and Desu (15) that
the expected number of events at time t, denoted D(t),
can be written as

where g is the average accrual rate, t* = min(T, t), and 

To find

an appropriate accrual period T and follow-up time τ,
we may require that the expected number of events at
time T + τ be at least 2d:

As noted earlier, the minimum T + τ occurs when
τ = 0 (i.e., enter patients continuously until the end of
the study with no follow-up), although this also results
in the maximum number of patients entered on study.
Table 11.6 gives the minimum length of study for the
case τ = 0 for some selected cases.

In this table, the median time in the control group
is assumed to be one year. For other median times, the
times in Table 11.6 must be adjusted accordingly by
multiplying by the correct control median. If the con-
trol median is in fact t years, the required length of
study is t times the values given in Table 11.6. In addi-
tion, it should be noted that the time at which the
required number of deaths occurs is a random variable.
The above formulation in terms of the expected num-
ber of deaths yields a result that can provide a rough

E D T d+ ≥ τ( )⎡⎣ ⎤⎦ 2

p t t t ti i i i( ) = − ( ) ( ) ( ) −⎡⎣ ⎤⎦
−

1 1
1

λ λ λ* exp – exp * .

E D t
t

p t p t( )⎡⎣ ⎤⎦ = ( ) ( )( )*γ
2 1 2+
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approximation to the required length of study. Even if
the assumptions are exactly correct, the actual time at
which the required number of events will occur on any
given clinical trial might be considerably different from
the expected time.

If we enter only the minimum number of patients
(2d), we will require the maximum length of study 
T + τ. Indeed, the expected time until the last patient
fails (this is required if we enter only the minimal num-
ber of patients) will be approximately 2d/g + (1.44M1
ln (2d))/Δ, where M1 is the median in the control group.
For example, if we consider a = 0.05, 1—b = 0.80, and
Δ = 0.70 then from Table 11.5, 2d = 248. If the entry
rate (g ) is 200 per year, then from Table 11.6, the
required minimum duration of study is 2.3 years when
M1 = 1. However, if we enter only 248 patients and fol-
low all of them to failure, the expected length of study
would be approximately 12.6 years (T ≅ 1.2 years,
t ≅ 11.4 years).

Obviously, some kind of compromise approach is
needed between the two extremes discussed above.
Although we desire a reasonably short time until the
study is completed, it is also desirable to keep the excess
number of patients entered over the required number
of events to be relatively small. One practical approach
is to define a maximum proportionate increase, p, in
patients entered over the required number of events, set
T = 2d(1 + p)/g, and solve (Eqn. 11-23) for t.

The duration of study calculations in this section,
in contrast to the required number of events calcula-
tions in the previous section, depend heavily on the
exponential assumption. For example, if the hazard
rates decrease sharply over time, additional follow-up
will not yield sufficient numbers of events as quickly
as in the constant hazard rate model. In designing
actual clinical trials, it is important to make realistic
assumptions about the anticipated hazard rates. The

90

TABLE 11.6
Required Minimum Duration of Study (In Years) to Compare Two 

Survival Distributions (a = 0.05, b = 0.80).

g = ANNUAL ACCRUAL RATE

2d 50 100 150 200 250

0.90 2830 58 30 20 16 13
0.80 632 14 7.6 5.5 4.4 3.8
0.70 248 6.2 3.7 2.8 2.3 2.0
0.60 122 3.6 2.2 1.7 1.4 1.3
0.50 68 2.3 1.5 1.2 1.0 0.9

∇

(Eqn. 11-22),

(Eqn. 11-23),
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