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Type | Error Rate Inflation

Simple example with two hypotheses

Assume that we test a single null hypothesis at significance level
a = 0.05,

* What is the maximum Type | error rate?

If we have two null hypotheses and do two independent tests,
each at level a = 0.05,

* What is the probability of rejecting at least one true null hypothesis?
Pr(reject at least one true null) = 1 — Pr(reject neither true null)
=1 — 0.95%
= 0.0975 (> 0.05)
* The Type | error rate is almost doubled

One possible solution: Test each hypothesis at level a/2 = 0.025
(Bonferroni test, see later). Then,

Pr(reject at least one true null) = 0.0494 (< 0.05)
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Type | Error Rate Inflation

More than two hypotheses

Probability of at least one Type | error
for different number of hypotheses m and significance levels a

o | =
(0]
© -
S
)
. [Ce)
L o 7
=
(4]
[y
(@]
» X
O o
o ,’
T
o
o
A
— a=0.1
--- o=005
° - a=0.01
S
| | | | | |
0 20 40 60 80 100

m

5 | IMPACT Symposium Il | Frank Bretz | Introduction to Multiple Testing | All Rights Reserved

Probability for Type | error
Increases with larger
values of m and a

Example:

Form = 10 and a = 0.05,
the probability of at least

one Type | error is 40.1%

For large m we almost

surely reject incorrectly at
least one null hypothesis
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Sources of Multiplicity
Overview

Multiple test problems are very common in clinical trials

Example applications include the comparsion of a new
treatment with

« Several other treatments

* A control for more than one endpoint

* A control for more than one population
* A control repeatedly in time

* ... (or any combination thereof)

Multiple test problems in clinical trials are very diverse
and many different methods are available
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Dealing with Multiplicity

Reducing the degree of multiplicity by
« Addressing a limited number of questions only

* Minimizing number of variables, using composite endpoints,
summary statistics, ...

* Prioritizing questions

If multiplicity still persists
- Multiplicity adjustment should always be considered

* Regulatory guidance (see Appendix) requires a description of the
multiplicity adjustment in Phase 11l study protocols

* If not thought necessary, explain why
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Common Multiple Test Procedures
 Basic concepts

* Procedures by
- Bonferroni, Holm
- Simes, Hochberg
- Dunnett, stepwise Dunnett
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Basic Concepts
Notation

Assume a “family” of m inferences
Parameters of interest are 64, ..., 6.,

Individual null hypotheses
Hl: 91 — O, ...,Hm: Qm =0

Example:
- Comparison of m treatments with a control therapy

* Then, 6; = u; — uy are the m treatment effect differences of
Interest, where
- u; denotes the effect for treatmenti =1, ...,m

- U denotes the effect for the control therapy
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Basic Concepts
Family-wise error rate (FWER)

Need to extend the usual Type | error rate concept
when testing a family of null hypotheses Hy, ..., H,,

A multiple test procedure is said to control the FWER at
level a (In the strong sense) if

Pr(reject at least one true null) < «

under any configuration of true/false null hypotheses
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Basic Concepts
Adjusted p-values

Adjusted p-values extend ordinary (i.e. unadjusted) p-
values by adjusting them for a given multiple test procedure

 Adjusted p-values can be compared directly with the significance level
a, while controlling the FWER

Formally, the adjusted p-value is the smallest significance
level at which a given hypothesis is significant as part of
the multiple test procedure

Example: Bonferroni method
p;, <a/m < q;=min(mp; 1) <a

where p; is the ordinary and g; the adjusted p-value for
1=1,....,m
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Basic Concepts
Single step and stepwise test procedures

Single step methods

The rejection or non-rejection of a single hypothesis does not depend
on the decision on any other hypothesis.

Examples: Bonferroni, Simes, Dunnett, ...

Stepwise methods

The rejection or non-rejection of a particular hypothesis may depend
on the decision on other hypotheses.

Examples: Holm, Hochberg, stepdown Dunnett, ...
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Bonferroni Method
Overview

Use a/m for all inferences; fori =1, ..., m:
Reject H; if p; < a/m

Example: With m = 3, p-values must be less than
0.05/3 = 0.0167 in order to be “significant”

With adjusted p-values g; = min(mp;, 1),
Reject H; If g; < «

- Note that mp; > 1 is possible and we thus need to truncate the
adjusted p-avlues at 1, resulting in the minimum expression

Both rejection rules above lead to the same test decisions
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Bonferroni Method
Rationale

The Bonferroni method follows from Pr(4,; U A;) <Pr(A;) + Pr(4;)

the Boole’s inequality

PI'(UL' Al) < Zi PF(AL)

where A; = {p; < a/m} denotes the
event of rejecting H;

Form = 2,
FWER = Pr(p; < a/2orp, < a/2|H, H, are true)

< Pr(p; < a/2|H is true) + Pr(p, < a/2 |H,is true)
=2a/2 =«
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Bonferroni Method
Properties

The Bonferroni method is a single step procedure

It IS rather conservative if:
* The number of hypotheses is large

* The test statistics are strongly positively correlated

The Bonferroni method can be improved:
- Stepwise methods (e.g. Holm procedure; see later)
« Accounting for correlations (e.g. Dunnett test; see later)

While Bonferroni is rarely used in practice, it is the basis
for commonly used advanced multiple test procedures
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Holm Procedure
Simplistic explanation

Assume p-values 0.0121, 0.0142, 0.0191, 0.1986
Applying Bonferroni, we use 0.05/4 = 0.0125 and reject H;

However, having rejected H; using 0.05/4, you no longer
believe that all four null hypotheses can be true

You now think only H,, H;, H, can be true

So, test H, using 0.05/3 = 0.0167, rather than 0.05/4
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Holm Procedure
Overview

Let p(yy < -+ < peny denote the ordered unadjusted p-
values with associated null hypotheses Hy), ..., Hip)

Then we have the following stepwise procedure:
“Ifpu) < a/m, reject H(py and continue; else stop

“fpey <a/(m—1), reject H,) and continue; else stop

“fpypy <a/(m—1i+1), rejectHg and continue; else stop

o If Pm) = @, reject Hm
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Holm Procedure
Properties

The Holm procedure is a stepwise procedure that is more
powerful than the Bonferroni method

- Bonferroni uses the same threshold a/m for all hypotheses
* Holm uses the larger thresholds a/(m —i + 1)

Sometimes called “stepdown Bonferroni” procedure

The Holm procedure can be improved by accounting for
correlations (e.g. stepdown Dunnett test; see later)
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Holm Procedure
Adjusted p-Values

With p(qy < -+ < pn), define adjusted p-values using
* 41y = mMp()

. _ [ m=Dpe), if(m—=Dpe) >qq)
12 = q(1) otherwise

N D (m)» if pam) > qim-1)
qd(m-1) otherwise

Formula for adjusted p-values:

qay = min{1,mp;)}
qdi) = min{l, max[(m — 1+ 1)p(l~), q(i_l)]},i =2,..,m
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Simes Method

Overview

The Simes method tests the global null hypothesis
H=HlﬂHzﬂﬂHm81 :62 — e =9m= 0

It uses all ordered p-values p(y), ..., Dan), NOt Just p(q)
Reject H if p;) < ia/mfor at least one i

Simes’ adjusted p-value uses min; mp; /i, which is less
than or equal to Bonferroni's mp

Simes cannot be used to test the individual hypotheses H;

Type | error rate is at most a under independence or
(certain types of) positive dependence of p-values
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Simes Method

Comparison with Bonferroni method (for m = 2)

Bonferroni rejects H, if p(yy < a/2
Simes rejects H, if py < a/20rp,) =«

Under independence of p, and p,,
 Pr(Bonferronirejects) =1—(1—-a/2)  =a—(a/2)* <a

» Pr(Simes rejects) =1-(1—-a/2)*+(a/2)’ =«
b2
1

« Simes is more powerful than a
global test based on Bonferroni

« Simes assumes non-negative
correlations between p-values,
Bonferroni does not

a2
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Hochberg Procedure
Overview

The Hochberg procedure is a stepwise version of the

Simes method, using the same

o |f Pm) = @, reject Hyy,

M pm-1) < a/2, reject Hq),

I pyy < a/(m—1+1), reject H ),

“Ifpy < a/m, reject Hy

Adjusted p-values are

d(m) P(m)

q)
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thresholds as Holm:
.., Hayy and stop; else continue

..., Hon—1y and stop; else continue

.., H;y and stop; else continue

min[(m — 1+ 1)p(l~), q(iﬂ)] Jfori=m-—-1,..,1
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Hochberg Procedure
Properties

The Hochberg procedure is sometimes called “stepup
Simes” procedure

It is more powerful than the Holm procedure

 Both procedures use the same thresholds, but Hochberg starts with
the largest p-value, whereas Holm starts with the smallest

It makes the same assumptions as the Simes test (i.e.
Independence or positive dependence of p-values)

The Hochberg procedure can be improved

* For example, Hommel procedure based on the closed test
procedure (see later)
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Dunnett Test
Comparing several treatments with a control

When comparing several treatments with a control, the
Dunnett test can be used

The methods from Bonferroni, Holm, Simes, and Hochberg

can also be used in these situations, but only the Dunnett
test exploits the correlation between the p-values
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Dunnett Test
Linear model and hypotheses

Consider the unbalanced one-way layout
Yij = Wi + &;j
where
* ¥;; denotes observationj =1,...,n;ingroupi=0,1,..,m
- u; the effect of treatment group i

* &;; are iIndependent and identically normally distributed with mean 0
and variance g%, i.e. &, ~ N(0,02)

The ANOVA F-test tests the global null H: uy = -+ = uyy,

Here, we are interested in comparing m treatments with the
control treatment i = 0, I.e. testing the m null hypotheses

Hi:9i=,ui—,u0§0, i=1,...,m
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Dunnett test
Individual test statistics

Consider the m pairwise t-tests

N\ N\

=
o

where [i; and 6 are the ordinary least squares of y; and o,
respectively

Note that t; ~ t, under H;, where t,, denotes the univariate t-
distribution with v = };; n; — m — 1 degrees of freedom

Furthermore, (t4, ..., t,;) follows the m-variate t-distribution with
v degrees of freedom and correlations

Jnl+n0 Jn]+n0 =1..,m
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Dunnett test
Rejection rule

For the m individual null hypotheses,
Reject H; If t; = ¢ 1—¢

The quantile ¢, 1, Is computed such that

P[(tl, v tm) < (cm’l_a, ---:Cm,l—a)] = P(maxi t; < Cm,l—a) =1—-a«a
where (t4, ..., t,;;) follows the m-variate t-distribution with v
degrees of freedom and correlations p;;, fori,j =1,..,m

In other words, ¢,, 1, IS the 1 — a quantile of the
distribution of the maximum of m t-distributed random

variables
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Dunnett test
Properties

Single step test, which is better than Bonferroni as it
exploits the known correlations between test statistics

Adjusted p-values can be calculated numerically based on
the multivariate t-distribution

The Dunnett test shown here can be extended to any linear
and generalized linear model (not in this tutorial)

It can be improved by extending it to a stepwise procedure,
similar to the Holm procedure (see later)

Other well-known parametric tests follow the same principle

» For example, the Tukey test compares all treatment groups against
each other, also using a multivariate t-distribution
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Stepwise Dunnett test
Overview

Let (1) = --- = t(;,) denote the ordered test statistics with
assoclated null hypotheses Hy, ..., Hgp)

Then we have the following stepwise procedure:

Ity = Cni—a reject H(py and continue; else stop
‘Mt =cni1-a reject H,) and continue; else stop
Mty =Ccnoivii—a reject H¢;y and continue; else stop
I teom) = €1 1-q; reject Hy,

where c¢,,_;+11-o denotes the 1 — a quantile of the distribution of the
maximum of m — i + 1 t-distributed random variables and is computed
from the corresponding multivariate t-distribution
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Stepwise Dunnett test
Properties

For the stepwise Dunnett test, the quantiles change as hypotheses
are rejected

- For example, if H(, Is rejected, then the quantile ¢;,_; 1, IS computed from a
(m — 1)-variate t-distribution

The stepwise Dunnett test is better than the single step Dunnett test

* It can be shown that ¢, 14 = Cp—11-q = =" = €11, Where c; 1_o = t, 1o iS the
guantile from the univariate t-distribution with v degrees of freedom

 The Dunnett test uses c,, ;_, for all comparisons

The stepwise Dunnett test is better than the Holm procedure as it
exploits the known correlations between test statistics

» The stepwise version shown here is sometimes called “stepdown Dunnett” test
» A “stepup Dunnett” test also exists, similar to Hochberg (not in this tutorial)
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Summary

Without With
Single Step Bonferroni Simes Dunnett
Stepwise Holm Hochberg Stepdown Dunnett

Remarks

» Single step methods are less powerful than stepwise methods and
not often used in practice

» Accounting for correlations leads to more powerful procedures, but
correlations are not always known

» Simes-based methods are more powerful than Bonferroni-based
methods, but control the FWER only under certain dependence
structures

* In practice, we select the procedure that is not only powerful from a
statistical perspective, but also appropriate from clinical perspective
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COPD Example

Background

Double-blind, parallel-group study to show that drug B is
better than drug A in patients with chronic obstructive
pulmonary disease (COPD)

Primary endpoint: FEV1 (forced expiratory volume in one
second)
« Continuous variable, where larger values indicate better efficacy

Secondary endpoint: Time to exacerbation
» Time until the event is of interest has been observed
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COPD Example

Background (continued)

There are two hypotheses corresponding to the two
endpoints, thus a multiple test procedure is needed

All of the previous multiple tests could be applied, but do
not reflect the relative importance of the two endpoints

* For example, the Bonferroni test would treat FEV1 and time-to-
exacerbation as equally important

Note that the previous stepwise procedures (Holm,
Hochberg, ...) use a data-driven order of hypotheses

* Here we need a multiple test procedure that specifies the order of the
nypotheses based on clinical importance (and not based on data)
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Hierarchical Test Procedures
Overview

If the hierarchy of hypotheses is specified before data is
observed, one can apply a hierarchical test procedure

Two hierarchical test procedures will be introduced

* Fixed sequence procedure
- Fallback procedure
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Hierarchical Test Procedures
Fixed sequence procedure — General description

Fixed sequence procedures test hierarchically ordered
hypotheses in sequence at level a until first non-rejection

Assume m hierarchically ordered hypotheses
Hl_)HZ_)..._)Hm

with unadjusted p-values p4, p,, ..., P

We have the following fixed sequence procedure:

*Ifp; < a, reject H; and continue; else stop
*Ifp, < a, reject H, and continue; else stop
*Ifp; < a, reject H; and continue; else stop

*Ifp, < a, reject H,,



Hierarchical Test Procedures
Fixed sequence procedure — Example with m = 3 hypotheses

Assume H,; - H, - Hj
* That is, H, is more important than H,, and H, is more important than H;

We have the following fixed sequence procedure for example:

! 0 0
: 1 1
H1 rejected at level «
Qo 0
Hy rejected at level a . 1 =@
o
Hjs not rejected at level a (stop) .

Note: Green = rejection; red = no rejection (and stop)
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Hierarchical Test Procedures
Fixed sequence procedure — Properties

Adjusted p-values are given by
q; = max{py, ..., i}, L

]
Lo
S

Advantages
- Simple procedure, each test is performed in sequence at level a

* It is optimal when hypotheses early in the sequence are associated
with large effects and performs poorly otherwise

Disadvantages
» Once a hypothesis is not rejected, no further testing is permitted

Great care is advised when specifying the sequence of
hypotheses
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Hierarchical Test Procedures
Fallback procedure — General description

Fallback procedures test hierarchically ordered hypotheses
In sequence as the fixed sequence procedure, but splits the
level a between the hypotheses

Assume m hierarchically ordered hypotheses
Hl_)HZ_)..._)Hm

with unadjusted p-values p4, ..., p, and a = a; + -+ + a,y,

Then the fallback procedure tests H; at level a;, where for
1=2,..,m
, { a;, if H;_, is not rejected
a; = :
Yolap 4 ap_y, otherwise

and a; = aq
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Hierarchical Test Procedures
Fallback procedure — Example with m = 3 hypotheses

Assume H, —» H, — Hj, and split the significance level as
a; =a, =az3 =a/3

Following the fallback procedure, we could have for example:

o e (a3

3 3 3

1 1
Initial Hl\ =. =(H3

Note: Green = rejection; red = no rejection (and stop)
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Hierarchical Test Procedures
Fallback procedure — Properties

The fixed sequence procedure is obtained as special
case from the fallback procedure by setting a; = a and
a; =0fori>1

In contrast to the fixed sequence procedure, the fallback

procedure tests all hypotheses in the pre-specified
sequence even If the initial hypotheses are not rejected
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Closed Test Procedure (CTP)

Operational definition for m = 2 null hypotheses

Schematic diagram for m = 2 null hypotheses Hy, H,
Hi, = H; NH,

T

H, H>

Rejection rule: Reject H; (H,) while controlling the FWER
at a, If H; (H,) and H,, are rejected, each at local level a
Operationally

- Test Hy, at local level a (using a suitable test): If rejected, proceed,;
otherwise stop

- Test H; and H, each at local level a: Reject H, (H,) overall if
H,, and H; (H,) are rejected locally
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Closed Test Procedure
Venn-type diagram for m = 2 null hypotheses

Different parts indicate different null hypotheses as shown above

Question: How do we test them?
- Test Hy, using Bonferroni, Simes, Dunnett, etc. at level a
- Test Hy, H, each using a level a test
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CTP Using Bonferroni

Holm procedure

Using Bonferroni to test H,,,
rejectifp; < a/2orp, <a/2,
ie., ifpay < a/2 P < /2

/\

If we fail to reject H,,, stop as
pP2=«a

neither H, or H, can be rejected P1=
according to the CTP

If we reject H,,, then
° H(py is rejected automatically as py < a/2 < a

- we only need to test H,) at level a, i.e., reject H,) if pip) < «

This results exactly in the Holm procedure

49 | IMPACT Symposium lll | Frank Bretz | Introduction to Multiple Testing | All Rights Reserved U NOVARTIS



CTP Using Simes

Hochberg procedure

Using Simes to test H;,,
rejectif piy < a/20rpp) < a

Py S a/20rpy <a

If we fall to reject H,,, stop /\

If we reject H,, because P <a P, < a
P2 < a, then H(l),H(z) are
rejected automatically as p(;) < p(2) < a, and stop

If we reject H,, because p(;) < a/2 but p,) > a, we then
reject H,y but fail to reject H(,y and stop

This results exactly in the Hochberg procedure for m = 2

* For m > 2 the Hochberg procedure is less powerful the CTP using
Simes tests (Hommel procedure)
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CTP Using Dunnett

Stepwise Dunnett test

Using Dunnett test to test Hy,,
rejectifty < cy1-4 0rty < Cyq_g,

|e, |f t(l) < C2,1—C( t(l) < C21-a
If we fail to reject H,,, stop /\
1 =C11-a I = C11-a

If we reject Hy,, then
° H(qpy Is rejected automatically as t1) < ¢z 1-¢ < C11-¢

- we only need to test H,) at level a, i.e., reject H,y if t(;) < ¢11-¢4

This results exactly in the stepdown Dunnett procedure
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CTP Using Weighted Bonferroni (1)

Fixed sequence procedure

Two ordered hypothese H; —» H,

Using weighted Bonferroni test to pr<aorp, <0
test Hy,, rejectif p, < aorp, <0 /\
If we fail to reject H,,, stop p1<a p: <«

If we reject Hy,, then
* H, is rejected automaticallyas p; < a
- we only need to test H, at level a, i.e., reject H, if p, < «

This results exactly in the fixed sequence procedure
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CTP Using Weighted Bonferroni (2)

Fallback procedure

Two ordered hypothese H; —» H,

Using weighted Bonferroni test to p1 < a,orp, <a,

test Hy,, rejectif p; < a; orp, < a, /\

* Weights «; and a, are such that 2 -
a+a, =a P1 =0y P2 =«

If we fail to reject H,,, stop

If we reject Hy,, then we test H, at level a, i.e., reject H,
fp, <«

* H, is tested at a, level instead of a

This results exactly in the fallback procedure
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Closed Test Procedure
Venn-type diagram for m = 3 null hypotheses
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Closed Test Procedure
Formal definition for m null hypotheses

For m > 2 many intersection hypotheses have to be tested
CTP considers all intersection hypotheses

H=() H,  Jcl.m
icJ

* Any suitable test can be used to test H; at local level a

An individual H; is rejected at level « if all hypotheses H;
formed by intersection with H; are rejected at local level a

55 | IMPACT Symposium Il | Frank Bretz | Introduction to Multiple Testing | All Rights Reserved U NOVARTIS



Summary

CTP iIs a general principle to construct powerful multiple
test procedures

In a CTP, one rejects an individual null hypothesis H; at
overall level a by rejecting all intersection null hypotheses
H; € Hy, including J = {i}

Many common multiple test procedures are CTP, including
* Holm, Hochberg, step-down Dunnett, ...

CTPs satisfy certain optimality criteria and there is no
reason why not to use a CTP

The number of intersection hypotheses is 2™ — 1

 For large m, this number increases rapidly and CTPs are in general
difficult to apply
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COPD Example extended

Multiple endpoints and multiple doses

Objective: Show that a new drug is better than a control
drug in patients with COPD for two endpoints

* Primary endpoint: FEV1 (forced expiratory volume in one second)
- Continuous variable, where larger values indicate better efficacy

« Secondary endpoint: Time to exacerbation
- Time until the event of interest has been observed

New drug is avalilable at two doses Dy, D, that are
compared with the control C

e

1
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COPD Example extended

Multiple endpoints and multiple doses

Two sources of multiplicity

- Comparing two doses with control for each of two endpoints

Resulting in four hypotheses of interest
» Two primary hypotheses H,, H, (comparing D, D, with C for FEV1)

» Two secondary hypotheses Hs, H, (comparing D, D, with C for time
to exacerbation)

Dose 1 Dose 2

Note that the four hypotheses
are not equally important Primary:
* The secondary hypotheses H; (H,)

should be tested, only if the corresponding
primary hypotheses H, (H,) is rejected

Secondary:

Need for suitable multiple test procedures
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Graphical Approach

Heuristics

As before,

* Null hypotheses H,, ..., H,,

- Initial allocation of the significance level a; + -+ a,,, = «a
- Unadjusted p-values py, ..., pm,

a—propagation

If a hypothesis H; can be rejected at level a; (i.e. p; < «a;),
propagate its level a; to the remaining, not yet rejected
hypotheses (according to a prefixed rule) and continue
testing with the updated a levels
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Graphical Approach

Conventions

© Hypotheses H4.....Hn @ @
represented as nodes

® Split of significance level o 2 2
as weights .. ... apn Bonferroni @ @

© “« propagation” through a 1

; 2
weighted, directed edges
Holm @ @
1
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Graphical Approach

Bonferroni test and Holm procedure: m=2

Bonferroni: no a—propagation, i.e. no edges between nodes

o

e}
2 2

(Hy )

Holm: includes a—propagation and is thus more powerful

1
() (Ha)
1
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Graphical Approach

Holm procedure: Example with a = 0.025

Test H, at level a/2 Test H, at level a/2
5 =0.0125 1 5 =0.0125
p1 = 0.04 1 p2 = 0.01
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Graphical Approach

Holm procedure: Example with a = 0.025

p, < a/2 = reject H,
5 =0.0125 1 5 =0.0125

B

p1 = 0.04 3 p2 = 0.01
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Graphical Approach

Holm procedure: Example with a = 0.025

Propagate a/2
a = 0.025 1

p1 = 0.04 7
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Graphical Approach

Holm procedure: Example with a = 0.025

Remove node for H,

a = 0.025
pi = 0.04
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Graphical Approach

Holm procedure: Example with a = 0.025

Test H; at level a
p, > a = retain H; and stop

o = 0.025

p1 = 0.04
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Graphical Approach
Weighted Holm procedure

Use aq, a, with a; + @, = a instead of a; = a, = a/2

(YA 1 8%)
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Graphical Approach

Fixed sequence procedure: Example with m = 3 hypotheses

Assume H,; - H, - H;

* That is, H, is more important than H,, and H, is more important than H,

Then we could have, for example, the following fixed
sequence procedure:

! 0
: 1 1
H1 rejected at level «

a
Hy rejected at level o . 1 X

Hjs not rejected at level a (stop)

o

Note: Green = rejection; red = no rejection (and stop)
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Graphical Approach

Fallback procedure: Example with m = 3 hypotheses

Assume H, —» H, —» H;, and split the significance level as
a; =a, =az =a/3

Then we could have, for example, the following fallback
procedure:

o (2]
3 3
.. 1 1
Initial > =(H~:
2o

Hj rejected at level ay = §

wl2 T e ) wle
@ & &

S T=Tal =) I VT _ 2o
Hj rejected at level ag = 5
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Graphical Approach

Formal definition

Define
« Initial levels a = (ay, ..., ay) With Y72 a; = a € (0,1)
- m x m transition matrix G = (g;;)

where g;; is the fraction of the level of H; that is propagated to H; with
0< 9ij <1, gii = 0, and Z}n:lgl] <1l VvVi=1,.. m

(G, a) determine a graph with an associated multiple test
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Graphical Approach
Update algorithm

Set]={1,..,m}
® Selectaj suchthatp; < a;
If no such ; exists, stop; otherwise reject H;
® Update the graph:
] =J\U}

ay+a g, €]

a —
¢ { 0, otherwise

germ*9ej9im

Jom = { 1-9¢i9;¢ |
0, otherwise

, tmel,t#+mgpg,, <1

® GotoStep 1l

75 | IMPACT Symposium Il | Frank Bretz | Introduction to Multiple Testing | All Rights Reserved U NOVARTIS



Graphical Approach

Main result

The initial levels a, the transition matrix G, and the
algorithm define a unique sequentially rejective test
procedure that controls the FWER at level o

Remarks:

« Any multiple test procedure derived and visualized by a graph (G, a)
IS based on the closed test principle

* The graph (G, a) and the algorithm define weighted Bonferroni tests
for each intersection hypothesis in a CTP

 The algorithm defines a shortcut for the resulting CTP, which does
not depend on the rejection sequence
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COPD Example Revisited

Background

Recall the study objective is to demonstrate that either dose
D, or D, of a new drug is better than control ¢ in COPD
patients for two endpoints:

* Primary endpoint: FEV1

« Secondary endpoint: Time to exacerbation

There is a natural order in that a primary endpoint is more
Important than a secondary endpoint

* Thus, we would like to test the primary null hypothesis first;
only if that is rejected, we test the secondary hypothesis

Both doses are equally important

* Thus, both doses are simultaneously tested against the control
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COPD Example Revisited

Background (continued)

We have four hypotheses corresponding to the two doses
and the two endpoints; a multiple test procedure is needed

Standard multiple test procedures could be applied, but do
not reflect the relative importance of the two endpoints

* For example, the Bonferroni test would treat FEV1 and time-to-

exacerbation as equally important and doesn’t reflect the relative
order desired

We need a multiple test procedure that reflects the relative

Importance and order of the hypotheses based on clinical
Importance
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COPD Example Revisited

Building a multiple test procedure: Hypotheses

@ D

secondary @

low dose high dose
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COPD Example Revisited

Building a multiple test procedure: Initial levels a

o
2

&
2
sy ) B

secondary @

0 0

low dose high dose
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COPD Example Revisited

Building a multiple test procedure: a—propagation

Q a
2 2
primary
secondary
0 a=(5 § 0 0) 0
low dose 0O 0 1 0 high dose

G = 0 0 0 1

0O 1 0 O

1 0 0 O
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COPD Example Revisited

Building a multiple test procedure: Alternative a—propagation

Q 1/2
5 /

primary
1/2 1/2
secondary
0 a=(E £ 0 0) 0
low dose 0 2 1o high dose
1 1
¢=|z 0 0 3
0 1 0 O
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COPD Example Revisited

Building a multiple test procedure: General solution

Y1 R Q—tg(: o — Q-t1)

a=(@ a 0 0) Resulting graph depends on only three
parameters a4, y;, and y, that can be
0 ¥ 1-n 0 finetuned based on:
G = 0 1 0 0 » further clinical considerations, or
1 0 0 0 * assumptions about effect sizes, correlations, ...
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COPD Example Revisited

Numerical example with & = 0.025

primary 2 1/2 2
Py = 0.01
secondary
ps = 0.07 @

low dose high dose
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COPD Example Revisited

Numerical example with & = 0.025

primary > 1/2 bl
py = 0.01
secondary
ps = 0.07 @

low dose high dose
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COPD Example Revisited

Numerical example with & = 0.025

‘Y
primary 2 1/2 2
p; = 0.01
secondary
ps = 0.07 @

low dose high dose
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COPD Example Revisited

Numerical example with & = 0.025

primary 1/2 i

low dose high dose
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COPD Example Revisited

Numerical example with & = 0.025

primary

secondary

low dose high dose
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COPD Example Revisited

Numerical example with & = 0.025

primary
1/3
2/3
secondary
ps = 0.07 ps = 0.001
% 1/2 O
low dose high dose
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COPD Example Revisited
SAS: Main function

/* h: indicator whether a hypothesis is rejected (= 1) or not (= 0) (1 x n vector)
a: initial significance level allocation (1 x n vector)
w: weights for the edges (n x n matrix)
p: observed p-values (1 x n vector) */
START mcp(h, a, w, p);
n = NCOL(h);
mata = a;
crit = 0;
DO UNTIL(crit =

1);
test = (p < a);
IF (ANY(test)) THEN DO;
rej = MIN(LOC(test#(1:n)));
hirej] = 1
wi =dJ(n, n, 0);
DO i = 1 TO n;
a[i] = a[i] + a[rej]*w[rej,i];
F (w[i,rej]*w[rej,i]<1) THEN DO j = 1 TO n;
wifi,j] = (w[i,]j] + w[i,rej]*w[rej,j])/(1 - w[i,rej]*w[rej,1i]);

END;

wi[i,i] = 0;
END;
w = wl; wirej,] = 0; w[,rej] =
afrej] = 0;

mata = mata // a;
END;
ELSE crit = 1;
END;

PRINT h; PRINT (ROUND(mata, 0.0001)); PRINT (ROUND(w,0.01));
FINISH;



COPD Example Revisited
SAS: Example call

START mcp(h, a, w, p);
FINISH;

/*** Numerical example ***/

h = {0 0 0 0 };
a = {0.0125 0.0125 0O 0 };
w = {0 0.5 0.5 0 )
0.5 0 0 0.5 ,
0 1 0 0 )
1 0 0 0 };
p = {0.01 0.02 0.07 0.001};

RUN mcp(h, a, w, p);
QUIT;
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COPD Example Revisited
R: gMCP package

Open source package at http://cran.r-project.org/web/packages/gMCP/

Provide graphical user interface (GUI) within R through JAVA

=
File Example graphs Analysis Extras Help

oj. — Adjacency Matrix
@ [ u [[NAJ[ ] & ][ 5] [Aemcenema
: H1 H2 H3 H4
Place new nodes and edges or start the test procedure gg HA1 05 05 0
| EE 05 0 05
H3 0 1 0
H4 1 (8] 0
|| Hypothesis Weight P-Value
| 12 I | rejectand pass o |
| H2 [1/2 | [0.02 | | Reject and pass @ ‘
|| Ha o | l0.07 | | Reject and pass « ‘
| He lo | [0.001 | | Reject and pass a ‘
Sum of weights: 1; ‘ Load p-values from R ‘
| Total a: 0025
@ No Information about correlations
................................................................................................................................................................................................................................... | © setectan r correlation matrix | || @
f Description | Analysis ) ) ) ) )
: ) Correlation applicable for Simes test (new feature that still needs testing)
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http://cran.r-project.org/web/packages/gMCP/
http://cran.r-project.org/web/packages/gMCP/
http://cran.r-project.org/web/packages/gMCP/
http://cran.r-project.org/web/packages/gMCP/
http://cran.r-project.org/web/packages/gMCP/

Summary

Proposed graphical approach offers the possibility to

* Tailor advanced multiple test procedures to structured families of
hypotheses,

* Visualize complex decision strategies in an efficient and easily
communicable way, and

» Ensure strong FWER control

Approach covers many common multiple test procedures
as special cases

* Holm, fixed sequence, fallback, gatekeeping, ...
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Summary

Multiplicity raises challenging problems which affect
almost every decision throughout drug development

Closed test procedure is a general principle to construct
powerful multiple test procedures; many common
procedures are CTPs

For structured hypotheses, one can apply the graphical
approach, which is based on CTPs

- Reflect the difference in importance as well as the relationship
between the various study objectives

* Are often applied to clinical trials with structured families of
hypotheses and several levels of multiplicity
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Summary

It is critical to choose the suitable method for a particular
problem

There are different types of multiplicity problems that
need other methods than those described here, such as:

- Safety data analyses
* Large-scale testing in genetics, proteomics etc.
* Post-hoc analyses / data snooping
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Q&A

Any questions?
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Appendix

Regulatory Guidelines

ICH E9 (1998) on “Statistical principles for clinical trials”

CPMP (2002) Points to consider on “Multiplicity issues
in clinical trials”

FDA draft guidance for industry on “Multiple endpoint
analyses” expected for 2014
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