Micro-Randomized Trials & mHealth

S.A. Murphy IMPACT 11/2014

mHealth

• Goal: Design a Continually Learning Mobile Health Intervention: "HeartSteps"

"Micro-Randomized" Trial

Data from wearable devices that sense and provide treatments

$$S_1, A_1, Y_1, \ldots, S_j, A_j, Y_j, \ldots$$

 S_j : State at jth decision time (high dimensional)

 A_j : Action at jth decision time (treatment)

 Y_j : Proximal Response (time-varying response)

- 1) Decision Times (Times at which a treatment can be provided.)
 - 1) Regular intervals in time (e.g. every 10 minutes)
 - 2) At user demand

HeartSteps includes two sets of decision times

- 1) Momentary: Approximately every 2-2.5 hours
- 2) Daily: Each evening at user specified time.

- State S_i
 - 1) Passively collected (location, weather, busyness of calendar, social context, activity on device)
 - 2) Actively collected (self-report)

HeartSteps includes activity recognition (walking, driving, standing/sitting), weather, location, calendar, adherence, step count, whether momentary intervention is on, self-report: usefulness, burden, self-efficacy, etc.

- 3) Actions A_j
 - 1) Treatments that can be provided at a decision time
 - 2) Whether to provide a treatment

HeartSteps includes two types of treatments

- 1) Momentary Lock Screen Recommendation
- 2) <u>Daily</u> Activity Planning

- 3) Actions A_j
 - 1) Treatments that can be provided at decision time
 - 2) Whether to provide a treatment

HeartSteps includes two types of treatments

- 1) Momentary Lock Screen Recommendation
- 2) <u>Daily</u> Activity Planning

Daily Activity Planning

No Plan or

or

Momentary Lock Screen Recommendation

No Message

or

4) Proximal Response Y_j

HeartSteps: Activity (step count) over next 60 minutes between decision times or daily activity.

Our Group's Scientific Goals

- 1) Develop methods/trial designs for assessing if there are proximal causal effects of the actions on the response.
- 2) Develop methods for assessing if there are delayed causal effects; assess if the proximal or delayed causal effects vary by particular state variables.
- 3) Develop data methods for constructing a treatment policy that inputs state and delivers actions via phone.
- 4) Develop online training algorithms that will result in a "Continually Updating" Personalized Treatment Policy

Today's Focus

- 1) Develop methods/trial designs for assessing if there are proximal causal effects of the actions on the response.
- 2) Develop methods for assessing if there are delayed causal effects; assess if the proximal or delayed causal effects vary by particular state variables.
- 3) Develop data methods for constructing a treatment policy that inputs state and delivers actions via phone.
- 4) Develop online training algorithms that will result in a "Continually Updating" Personalized Treatment Policy

Proposed Experimental Design: Micro-Randomized Trial

Randomize between actions at decision times → Each person may be randomized 100's or 1000's of times.

These are sequential, "full factorial," designs.

Why Micro-Randomization?

- Factorial designs are the gold standard when collecting data to build a treatment involving many components
- Actions are often intended to have a proximal effect.
 - Randomization (+ representative sample) is a gold standard in providing data to assess a causal effect
- Sequential randomization will enhance quality of many interesting subsequent data analyses.

Justifying the Sample Size for a Micro-Randomized Trial

• Focus on whether to provide a Momentary Lock Screen Recommendation, e.g.

$$A_j \in \{0, 1\}$$

• Randomization in HeartSteps

$$P[A_j = 1] = .4 \ j = 1, \dots, J$$

• Size to Detect a Proximal Effect

Proximal Causal Effect

- Recall that Y_j is the proximal response (activity level) recorded after action A_j
- A_j is only delivered if the momentary intervention is on at time j.
- Set $R_j = 1$ if the momentary intervention is on at time j, otherwise $R_j = 0$

Potential Outcomes

Define

$$\bar{A}_j = \{A_1, A_2, \dots, A_j\}, \bar{a}_j = \{a_1, a_2, \dots, a_j\}$$

- Define $Y_j(\bar{a}_j)$ to be the observed response, Y_j if $\bar{A}_j=\bar{a}_j, \text{ e.g., } Y_j=Y_j(\bar{A}_j)$
- Define $R_j(\bar{a}_{j-1})$ to be the observed "intervention on" indicator if $\bar{A}_{j-1}=\bar{a}_{j-1}$

Proximal Causal Effect

 Define the Proximal Causal Effect at time j as

$$E[Y_j(\bar{A}_{j-1},1) - Y_j(\bar{A}_{j-1},0)|R_j(\bar{A}_{j-1}) = 1]$$

What does this estimand mean?

Proximal Causal Effect

The randomization implies that

$$E[Y_j(\bar{A}_{j-1}, 1) - Y_j(\bar{A}_{j-1}, 0) | R_j(\bar{A}_{j-1}) = 1] =$$

$$E[Y_j|R_j = 1, A_j = 1] - E[Y_j|R_j = 1, A_j = 0]$$

Put

$$\beta(j) = E[Y_j | R_j = 1, A_j = 1] - E[Y_j | R_j = 1, A_j = 0]$$

Proposal

Design and size micro-randomized trial to detect proximal causal effect of treatment

• Proximal causal effect is a time-varying main effect $\beta(j)$, j=1,...,J

Test for Sample Size Calculation

We construct a test statistic for

$$H_0: \beta(j) = 0, \forall j$$

• A simple approach is parameterize

$$\beta(j) = \beta_0 + \beta_1 \lfloor \frac{j-1}{5} \rfloor + \beta_2 \lfloor \frac{j-1}{5} \rfloor^2$$

and test

$$H_0: \beta_i = 0, i = 0, 1, 2$$

Test Statistic for Sample Size Calculation

The model

$$E[Y_j|R_j = 1, A_j] = \gamma(j) + \beta(j)(A_j - q_j)$$

where q_j is the randomization probability

• $q_i = .4$ in HeartSteps

Test Statistic for Sample Size Calculation

• Test statistic is based on "GEE" fit of

$$E[Y_j|R_j = 1, A_j] = \gamma(j) + \beta(j)(A_j - q_j)$$

where

$$\beta(j) = \beta_0 + \beta_1 \lfloor \frac{j-1}{5} \rfloor + \beta_2 \lfloor \frac{j-1}{5} \rfloor^2$$

• You select parameterization of $\gamma(j)$

Alternative for Sample Size Calculation

• One calculates a sample size to detect a given alternative with a given power.

• Alternative:

$$H_1: \beta_i = d_i \sigma, i = 0, 1, 2$$

where σ^2 is the residual variance.

Standardization in Sample Size Calculation

• Residual variance is

$$\sigma^2 = VAR(Y_j | R_j = 1, A_j)$$

Specify Alternative for Sample Size Calculation

- Scientist indirectly specifies standardized d_i 's
 - initial proximal treatment effect: d_0 ,
 - average proximal effect over trial duration:

$$\frac{1}{J}\sum_{j=1}^{J} \left(d_0 + d_1 \lfloor \frac{j-1}{5} \rfloor + d_2 \lfloor \frac{j-1}{5} \rfloor^2\right),\,$$

- and day of maximal proximal effect: $-\frac{d_1}{2d_2}$
- We solve for d_0 , d_1 , d_2

Test Statistic for Sample Size Calculation

• Put $Y_i = (Y_{i1}, \dots, Y_{iJ})^T$ for i^{th} subject

p is the total number of parameters (p > 3);

 X_i is the associated design matrix (J by p)

N is sample size

Last 3 columns of X_i contain row entries:

$$R_{ij}(A_{ij}-q_{ij}),R_{ij}(A_{ij}-q_{ij})\lfloor rac{j-1}{5}
floor, \ R_{ij}(A_{ij}-q_{ij})\lfloor rac{j-1}{5}
floor^2$$

Test Statistic for Sample Size Calculation

"GEE" test statistic is

$$N\hat{\beta}^T(K\hat{\Sigma}K^T)^{-1}\hat{\beta}$$

where $\hat{\Sigma}$ is the usual sandwich estimator of the variance-covariance and K is 3 by p matrix picking out columns associated with coefficients β

Working Assumptions for Sample Size Calculation

- 1) Within subject, pairwise conditional, no correlation: the model errors, $(\epsilon_{ij}, \epsilon_{ik})$ are uncorrelated with the treatments $(A \cup A \cup A)$ given (B 1, B 1)
 - (A_{ij}, A_{ik}) given $(R_{ij} = 1, R_{ik} = 1)$.
- 2) $P(R_{ij} = 1) = \tau$ a constant.
- 3) Model errors, ϵ_{ij} 's, have mean zero.

$$\epsilon_{ij} = Y_{ij} - \left(\gamma(j) + \beta(j)(A_{ij} - q_{ij})\right), \ R_{ij} = 1$$

Sample Size Calculation

• Then, the asymptotic distribution is a Chi-Squared on 3 degrees of freedom with non-centrality parameter: $d^T(\Sigma_\beta)^{-1}d$

• Σ_{β} only depends on polynomials in $\lfloor \frac{j-1}{5} \rfloor$, the distribution of R_j and on the randomization probability.

Sample Size Calculation

• The asymptotic distribution of the test statistic does not depend on the form of $\gamma(j)$

• The asymptotic distribution does depend on the distribution of R_j

Sample Size Calculation

• Because proximal effects are within person contrasts, we expect that the sample sizes will be small.

• Instead of a Chi-Squared on 3 degrees we use $\frac{3(N-p+2)}{N-p}F_{p,N-p}$ with the same noncentrality parameter $d^T(\Sigma_\beta)^{-1}d$

- Standardized d_i 's
 - initial proximal effect: $d_0=0$
 - output average proximal effect
 - day of maximal proximal effect:

$$-\frac{d_1}{2d_2} = 28$$

Model:

$$\gamma(j) + \beta(j)(A_{ij} - .4), \ j = 1, ..., 42$$

where

$$\gamma(j) = \gamma_0 + \gamma_1 \lfloor \frac{j-1}{5} \rfloor + \gamma_2 \lfloor \frac{j-1}{5} \rfloor^2$$

Sample Sizes, Power=.8, α =.05

Standardized Average	
Proximal Effect	

$$\frac{1}{J} \sum_{j=1}^{J} \left(d_0 + d_1 \lfloor \frac{j-1}{5} \rfloor + d_2 \lfloor \frac{j-1}{5} \rfloor^2 \right)$$

0.06

0.08

0.10

Sample Size For E[R]=.7 or .5

81 or 112

48 or 65

33 or 43

Primary Data Analysis

• Put $Y_i = (Y_{i1}, \dots, Y_{iJ})^T$ for i^{th} subject

p is the total number of parameters (p > 3);

 X_i is the associated design matrix (J by p)

N is sample size

Last 3 columns of X_i contain row entries:

$$R_{ij}(A_{ij}-q_{ij}), R_{ij}(A_{ij}-q_{ij})\lfloor rac{j-1}{5}
floor, \ R_{ij}(A_{ij}-q_{ij})\lfloor rac{j-1}{5}
floor^2,$$

Test Statistic

• "GEE" test statistic is

$$N\hat{\beta}^T(K\hat{\Sigma}K^T)^{-1}\hat{\beta}$$

where K is 3 by p matrix picking out columns associated with β coefficients

Small Sample Adjustment

• \hat{e}_{ij} is the i^{th} subject, j^{th} time point residual and $\hat{e}_i = (\hat{e}_{i1}, \dots, \hat{e}_{iJ})^T$

Adjusted sandwich estimator:

$$\hat{\Sigma} =$$

$$\hat{\sigma}^{2} N \left(\sum_{i=1}^{N} X_{i}^{T} X_{i} \right)^{-1} \left\{ \sum_{i=1}^{N} X_{i}^{T} B_{i} \hat{e}_{i} \hat{e}_{i}^{T} B_{i} X_{i} \right\} \left(\sum_{i=1}^{N} X_{i}^{T} X_{i} \right)^{-1}$$

$$B_{i} = (I - H_{ii})^{-1}$$
37

$$B_i = (I - H_{ii})^{-1}$$

Power of Detecting Overall Effect P(R=1) = 0.7, P(A=1) = 0.4

Average Proximal Effect

Simulation Results Type 2 Error Rate (2000 data sets)

Average Proximal Effect (Sample Size)	Power
0.05(115)	0.790
0.06(81)	0.794
0.07(61)	0.800
0.08(48)	0.801
0.09(39)	0.798
0.10(33)	0.803

Scientific Goals

- 1) Develop methods/trial designs for assessing if there are proximal causal effects of the actions on the response.
- 2) Develop methods for assessing if there are delayed causal effects; assess if the proximal or delayed causal effects vary by particular state variables.
- 3) Develop data methods for constructing a treatment policy that inputs state and delivers actions via phone.
- 4) Develop online training algorithms that will result in a "Continually Updating" treatment policy

Collaborators: P. Liao, A. Lee, C. Anderson, P. Klasnja & A. Tewari

WE ARE SEEKING POSTDOCS!!!

Email if you have questions!

samurphy@umich.edu