

IMPACT, Cary, NC, November 21, 2014

Acknowledgments

- IMPACT organizers
- Duke center for personalized medicine
- NCSU/UNC AI and personalized medicine lab
- NCSU personalized medicine cluster
- Joint work with: Marie Davidian, Michael Kosorok, Todd Regh, Rui Song, Butch Tsiatis, Ming Yuan, Donglin Zeng, Yingqi Zhao

Personalized medicine

"The right treatment for the right patient at the right time."
 Mantra of personalized medicine

- Best clinical care requires treatment decisions based on individual patient characteristics
- Improve patient outcomes but also reduce cost, patient burden, and resource consumption
- Data-driven personalized medicine
 - Treatment regime formalizes personalized medicine as a function from patient info to a recommended treatment

Can we size a clinical trial to ensure estimation of a high-quality treatment regime?

Statistical rigor and personalized medicine

Identifying subgroups has negative connotations

- Data snooping
- Lack of reproducibility/generalizability
- Perceived lack of statistical rigor*
- Goal of personalized medicine should be reflected in design

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

- Identify planned analysis
- State evaluation criteria
- Estimate how much data will be needed

Sample size calculation for personalized medicine

Sample size calculation typically based on primary aim

- Simple hypotheses, e.g., comparison of two means
- Clear criteria for power calculations
- Test stats have regular sampling distans
- Estimation of a treatment regime is typically a secondary, hypothesis generating, analysis
 - Composite hypotheses, high-dim nuisance parameters

- Many potential criteria for power calculations
- Test stats have non-regular sampling distns

One approach

- Size the study to ensure:
 - (C1) Power to detect an improvement in the mean outcome under the optimal treatment regime relative to standard care
 - (C2) Near optimality of the estimated optimal regime with high-probability
- Invert projection confidence intervals to obtain sample size

- Valid despite non-regularity
- Potentially conservative
- Assume existence of a small pilot study
 - Only elicit clinically meaningful quantities

Setup

- ▶ Trial will collect data on *n* subjects $\mathcal{D}(n) = \{(\mathbf{X}_i, A_i, Y_i)\}_{i=1}^n$
 - $\mathbf{X} \in \mathbb{R}^p$ pre-treatment subj. info.
 - $A \in \{-1, 1\}$ treatment assigned
 - $Y \in \mathbb{R}$ outcome, higher is better
- Treatment regime $\pi : \operatorname{dom} \mathbf{X} \to \operatorname{dom} \mathbf{A}$
 - Patient presenting with $\mathbf{X} = \mathbf{x}$ recommended $\pi(\mathbf{x})$
 - Define $V(\pi) = \mathbb{E}^{\pi} Y$, optimal regime $\pi^{\text{opt}} = \arg \sup_{\pi \in \Pi} V(\pi)$

- Many methods for estimating π^{opt} (EBL, et al., 2014)
- ► Focus on *Q*-learning (Murphy, 2005)

Analysis method: Q-learning

• Q-function
$$Q(\mathbf{x}, a) = \mathbb{E}(Y | \mathbf{X} = \mathbf{x}, A = a)$$

•
$$\pi^{\text{opt}}(\mathbf{x}) = \arg \max_{a} Q(\mathbf{x}, a)$$

• Estimate π^{opt} via $\hat{\pi}_n(\mathbf{x}) = \arg \max_a \hat{Q}_n(\mathbf{x}, a)$, where \hat{Q}_n is estimator of Q

- ► Lin. model $Q(\mathbf{x}, a; \beta) = \mathbf{x}_0^T \beta_0 + a \mathbf{x}_1^T \beta_1$, $\mathbf{x}_0, \mathbf{x}_1$ features of \mathbf{x}
 - Define $\widehat{\beta}_n = \arg \min_{\beta} \mathbb{P}_n \{ Y Q(\mathbf{X}, A; \beta) \}^2$
 - $\widehat{Q}_n(\mathbf{x},a) = Q(\mathbf{x},a;\widehat{\beta}_n)$
 - Define β^* to be the population analog of $\widehat{\beta}_n$

Analysis method: *Q*-learning

• Q-function
$$Q(\mathbf{x}, a) = \mathbb{E}(Y | \mathbf{X} = \mathbf{x}, A = a)$$

•
$$\pi^{\text{opt}}(\mathbf{x}) = \arg \max_{a} Q(\mathbf{x}, a)$$

• Estimate π^{opt} via $\hat{\pi}_n(\mathbf{x}) = \arg \max_a \hat{Q}_n(\mathbf{x}, a)$, where \hat{Q}_n is estimator of Q

► Lin. model
$$Q(\mathbf{x}, a; \beta) = \mathbf{x}_0^T \beta_0 + a \mathbf{x}_1^T \beta_1$$
, $\mathbf{x}_0, \mathbf{x}_1$ features of \mathbf{x}

• Define
$$\widehat{\beta}_n = \arg \min_{\beta} \mathbb{P}_n \{ Y - Q(\mathbf{X}, A; \beta) \}^2$$

$$\bullet \ \widehat{Q}_n(\mathbf{x},a) = Q(\mathbf{x},a;\widehat{\beta}_n)$$

• Define β^* to be the population analog of $\widehat{\beta}_n$

• Write
$$V(\beta)$$
 to denote $V(\pi_{\beta})$ where $\pi_{\beta}(\mathbf{x}) = \arg \max_{a} Q(\mathbf{x}, a; \beta)$

Estimator of $V(\beta^*)$

- For any β, let V_{D(n)}(β) denote an augmented IPWE for V(β*) (Zhang et al., 2012)
 - $\widehat{V}_{\mathcal{D}(n)}(\beta^*)$ is unbiased for $V(\beta^*)$
 - $\widehat{V}_{\mathcal{D}(n)}(\widehat{\beta}_n)$ is an augmented IPWE of $V(\beta^*)$ (Zhang et al., 2012)
- $\mathbb{G}_n = n^{1/2} \left\{ \widehat{V}_{\mathcal{D}(n)}(\widehat{\beta}_n) V(\beta^*) \right\}$ is non-regular and need not even be $O_P(1)$
 - Standard asymptotic theory does not apply
 - Sample size calculations cannot be based directly on \mathbb{G}_n

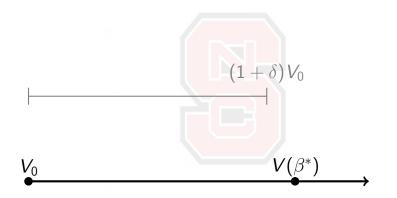
(日) (同) (三) (三) (三) (○) (○)

Formalizing (C1) and (C2)

- Let V₀ be an elicited expected outcome under standard care
- ▶ Pilot data $D_p = D(n_p)$, want $n^* = n^*(D_p)$ so that:
 - (C1) The power to reject the hypothesis $V(\beta^*) = V_0$ in favor of $V(\beta^*) > V_0$ is at least 1ρ when $V(\beta^*) \ge (1 + \delta)V_0$

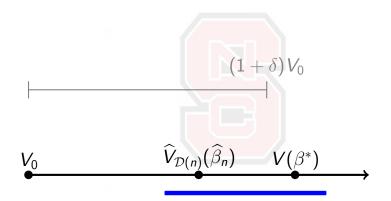
(C2) $P(|\widehat{V}_{\mathcal{D}(n^*)}(\widehat{\beta}_{n^*}) - V(\beta^*)| \le \epsilon) \ge 1 - \rho$

where $\rho, \epsilon, \delta > 0$ are fixed constants





◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Suppose ζ_{n,1−ρ} is a (1 − ρ) × 100% confidence interval for V(β*) with diameter d(n)
 - ► If $d(n) \le \delta V_0$ then $V(\beta^*)$ and V_0 cannot simultaneously belong to $\zeta_{n,1-\rho}$ if $(1+\delta)V_0 \le V(\beta^*)$

► If
$$d(n) \le \epsilon$$
 and $\widehat{V}_n(\widehat{\beta}_n) \in \zeta_{n,1-\rho}$ then
 $P\left\{ |\widehat{V}_n(\widehat{\beta}_n) - V(\beta^*)| \le \epsilon \right\} \ge 1-\rho$

• Let $\hat{d}_{\mathcal{D}_p}(n)$ be an estimator of d(n) then

$$\widehat{n}^* = \inf\left\{n \, : \, \widehat{d}_{\mathcal{D}_{\mathcal{P}}}(n) \leq \min(\delta V_0, \epsilon)
ight\}$$

is our estimator of n^*

Constructing a confidence interval for $V(\beta^*)$

- Idea: treat β^{*} as nuisance parameter and construct projection interval (Berger and Boos, 1994; Robins, 2004)
- For fixed β , $n^{1/2} \left\{ \widehat{V}_n(\beta) V(\beta) \right\}$ is asymptotically normal with mean zero and variance $\sigma^2(\beta)$

$$\mathbb{I}_{\gamma}(\mathcal{D}_{p}, n_{p}) = \left(\widehat{V}_{n_{p}}(\gamma) - \frac{z_{1-\mu/2}\widehat{\sigma}_{n_{p}}(\gamma)}{\sqrt{n_{p}}}, \, \widehat{V}_{n_{p}}(\gamma) + \frac{z_{1-\mu/2}\widehat{\sigma}_{n_{p}}(\gamma)}{\sqrt{n_{p}}}\right)$$

(日) (同) (三) (三) (三) (○) (○)

is a valid $(1-\mu) imes 100\%$ CI for V(eta)

▶ Let $\mathbb{T}(\mathcal{D}_{p}, n_{p})$ be a $(1 - \xi) \times 100\%$ Wald-type CI for β^{*}

Constructing a confidence interval for $V(\beta^*)$ cont'd

► A
$$(1 - \mu - \xi) \times 100\%$$
 projection Cl for $V(\beta^*)$ is

$$\bigcup_{\beta \in \mathbb{T}(\mathcal{D}_p, n_p)} \mathbb{I}_{\beta}(\mathcal{D}_p, n_p),$$

which has diameter

$$d(n_p) = \sup_{\beta \in \mathbb{T}(\mathcal{D}_p, n_p)} \mathbb{I}_{\beta}(\mathcal{D}_p, n_p) - \inf_{\beta \in \mathbb{T}(\mathcal{D}_p, n_p)} \mathbb{I}_{\beta}(\mathcal{D}_p, n_p)$$

Estimated diameter is

$$\widehat{d}_{\mathcal{D}_{p}}(n) = \sup_{\beta \in \mathbb{T}(\mathcal{D}_{p}, n)} \mathbb{I}_{\beta}(\mathcal{D}_{p}, n) - \inf_{\beta \in \mathbb{T}(\mathcal{D}_{p}, n)} \mathbb{I}_{\beta}(\mathcal{D}_{p}, n),$$

which determines $\widehat{n}^{*} = \inf \left\{ n : \widehat{d}_{\mathcal{D}_{p}}(n) \leq \min(\delta V_{0}, \epsilon) \right\}$

Simulated experiment

Use generative model

 $\begin{array}{ll} U_i \sim \operatorname{Bernoulli}(\nu), & X_i \sim \mathsf{N}_p\left(0, I_p\right), \\ Z_i = (I - U_i P_{\beta^*}) X_i, & A_i \sim \operatorname{Uniform}\left\{-1, 1\right\}, \\ e_i \sim \mathsf{N}\left(0, 1\right), & Y_i = X_i^{\mathsf{T}} \alpha^* + A_i Z_i^{\mathsf{T}} \beta^* + e_i, \end{array}$

where P_{β^*} is projection matrix onto span β^*

Addl details

- Dimension of **X** is p = 5
- Pilot study size $n_p = 20$
- Set $\delta = \epsilon = V_0 = 1$, $V(\beta^*) = 2$, 2.25, and $\rho = 0.80$
- Compare with standard normal-based confidence interval

Results

		Projection sample size				Normal sample size			
V^*	ν	$ V(\beta^*)$	V_0	$\mathbb{E}\widehat{n}^*$	SD	$V(\beta^*)$	V_0	$\mathbb{E}\widehat{n}^*$	SD
2	0	0.77	0.08	156	151	0.77	0.14	111	62
2	0.05	0.77	0.06	144	132	0.77	0.13	107	62
2	0.1	0.80	0.07	144	127	0.76	0.14	100	60
2	0.25	0.80	0.08	149	123	0.76	0.16	98	65
2	0.5	0.79	0.09	191	204	0.72	0.19	85	65
2	0.75	0.79	0.09	191	204	0.70	0.23	101	104
2.25	0	0.74	0.02	145	138	0.78	0.073	120	68
2.25	0.05	0.77	0.02	147	143	0.78	0.07	112	65
2.25	0.1	0.77	0.03	142	118	0.77	0.067	114	71
2.25	0.25	0.78	0.04	166	157	0.75	0.09	112	75
2.25	0.5	0.79	0.03	228	216	0.74	0.11	105	84
2.25	0.75	0.77	0.06	347	390	0.69	0.17	129	135

Simulation conclusions

- Reliable sample size estimates in simulated examples
- Works with small sample size and moderate number of covariates
- Large standard deviation
- ► Mid-stream update (not shown) reduces variability and En^{*} while maintaining operating characteristics

Discussion

- Sample size calculation for personalized medicine is possible
- Many possible criteria for sizing the study, more thought is needed
- Extending this to the multistage setting without becoming excessively conservative is an open problem

Thank you. laber@stat.ncsu.edu

・ロト ・ 日 ト ・ モ ト ・ モ ト

æ