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Personalized medicine

I “The right treatment for the right patient at the right time.”
—Mantra of personalized medicine

I Best clinical care requires treatment decisions based on
individual patient characteristics

I Improve patient outcomes but also reduce cost, patient
burden, and resource consumption

I Data-driven personalized medicine
I Treatment regime formalizes personalized medicine as a

function from patient info to a recommended treatment

I Can we size a clinical trial to ensure estimation of a
high-quality treatment regime?



Statistical rigor and personalized medicine

I Identifying subgroups has negative connotations

I Data snooping

I Lack of reproducibility/generalizability

I Perceived lack of statistical rigor∗

I Goal of personalized medicine should be reflected in design

I Identify planned analysis

I State evaluation criteria

I Estimate how much data will be needed



Sample size calculation for personalized medicine

I Sample size calculation typically based on primary aim

I Simple hypotheses, e.g., comparison of two means

I Clear criteria for power calculations

I Test stats have regular sampling distns

I Estimation of a treatment regime is typically a secondary,
hypothesis generating, analysis

I Composite hypotheses, high-dim nuisance parameters

I Many potential criteria for power calculations

I Test stats have non-regular sampling distns



One approach

I Size the study to ensure:

(C1) Power to detect an improvement in the mean outcome under
the optimal treatment regime relative to standard care

(C2) Near optimality of the estimated optimal regime with
high-probability

I Invert projection confidence intervals to obtain sample size

I Valid despite non-regularity

I Potentially conservative

I Assume existence of a small pilot study

I Only elicit clinically meaningful quantities



Setup

I Trial will collect data on n subjects D(n) = {(Xi ,Ai ,Yi )}ni=1

I X ∈ Rp pre-treatment subj. info.

I A ∈ {−1, 1} treatment assigned

I Y ∈ R outcome, higher is better

I Treatment regime π : domX→ domA

I Patient presenting with X = x recommended π(x)

I Define V (π) = EπY , optimal regime πopt = arg supπ∈Π V (π)

I Many methods for estimating πopt (EBL, et al., 2014)

I Focus on Q-learning (Murphy, 2005)



Analysis method: Q-learning

I Q-function Q(x, a) = E(Y |X = x,A = a)

I πopt(x) = arg maxa Q(x, a)

I Estimate πopt via π̂n(x) = arg maxa Q̂n(x, a), where Q̂n is
estimator of Q

I Lin. model Q(x, a;β) = xᵀ0β0 + axᵀ1β1, x0, x1 features of x

I Define β̂n = arg minβ Pn {Y − Q(X,A;β)}2

I Q̂n(x, a) = Q(x, a; β̂n)

I Define β∗ to be the population analog of β̂n

I Write V (β) to denote V (πβ) where
πβ(x) = arg maxa Q(x, a;β)
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Estimator of V (β∗)

I For any β, let V̂D(n)(β) denote an augmented IPWE for
V (β∗) (Zhang et al., 2012)

I V̂D(n)(β
∗) is unbiased for V (β∗)

I V̂D(n)(β̂n) is an augmented IPWE of V (β∗) (Zhang et al.,
2012)

I Gn = n1/2
{
V̂D(n)(β̂n)− V (β∗)

}
is non-regular and need not

even be OP(1)

I Standard asymptotic theory does not apply

I Sample size calculations cannot be based directly on Gn



Formalizing (C1) and (C2)

I Let V0 be an elicited expected outcome under standard care

I Pilot data Dp = D(np), want n∗ = n∗(Dp) so that:

(C1) The power to reject the hypothesis V (β∗) = V0 in favor of

V (β∗) > V0 is at least 1− ρ when V (β∗) ≥ (1 + δ)V0

(C2) P(|V̂D(n∗)(β̂n∗)− V (β∗)| ≤ ε) ≥ 1− ρ

where ρ, ε, δ > 0 are fixed constants



Inverting a confidence interval
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Inverting a confidence interval

I Suppose ζn,1−ρ is a (1− ρ)× 100% confidence interval for

V (β∗) with diameter d(n)

I If d(n) ≤ δV0 then V (β∗) and V0 cannot simultaneously

belong to ζn,1−ρ if (1 + δ)V0 ≤ V (β∗)

I If d(n) ≤ ε and V̂n(β̂n) ∈ ζn,1−ρ then

P
{
|V̂n(β̂n)− V (β∗)| ≤ ε

}
≥ 1− ρ

I Let d̂Dp(n) be an estimator of d(n) then

n̂∗ = inf
{
n : d̂Dp(n) ≤ min(δV0, ε)

}
is our estimator of n∗



Constructing a confidence interval for V (β∗)

I Idea: treat β∗ as nuisance parameter and construct projection
interval (Berger and Boos, 1994; Robins, 2004)

I For fixed β, n1/2
{
V̂n(β)− V (β)

}
is asymptotically normal

with mean zero and variance σ2(β)

Iγ(Dp, np) =

(
V̂np(γ)−

z1−µ/2σ̂np(γ)
√
np

, V̂np(γ) +
z1−µ/2σ̂np(γ)
√
np

)

is a valid (1− µ)× 100% CI for V (β)

I Let T(Dp, np) be a (1− ξ)× 100% Wald-type CI for β∗



Constructing a confidence interval for V (β∗)
cont’d

I A (1− µ− ξ)× 100% projection CI for V (β∗) is⋃
β∈T(Dp ,np)

Iβ(Dp, np),

which has diameter

d(np) = sup
β∈T(Dp ,np)

Iβ(Dp, np)− inf
β∈T(Dp ,np)

Iβ(Dp, np)

I Estimated diameter is

d̂Dp(n) = sup
β∈T(Dp ,n)

Iβ(Dp, n)− inf
β∈T(Dp ,n)

Iβ(Dp, n),

which determines n̂∗ = inf
{
n : d̂Dp(n) ≤ min(δV0, ε)

}



Simulated experiment

I Use generative model

Ui ∼ Bernoulli(ν), Xi ∼ Np (0, Ip) ,
Zi = (I − UiPβ∗)Xi , Ai ∼ Uniform {−1, 1} ,
ei ∼ N (0, 1) , Yi = X>i α

∗ + AiZ
>
i β
∗ + ei ,

where Pβ∗ is projection matrix onto spanβ∗

I Addl details
I Dimension of X is p = 5

I Pilot study size np = 20

I Set δ = ε = V0 = 1, V (β∗) = 2, 2.25, and ρ = 0.80

I Compare with standard normal-based confidence interval



Results

Projection sample size Normal sample size
V ∗ ν V (β∗) V0 En̂∗ SD V (β∗) V0 En̂∗ SD
2 0 0.77 0.08 156 151 0.77 0.14 111 62
2 0.05 0.77 0.06 144 132 0.77 0.13 107 62
2 0.1 0.80 0.07 144 127 0.76 0.14 100 60
2 0.25 0.80 0.08 149 123 0.76 0.16 98 65
2 0.5 0.79 0.09 191 204 0.72 0.19 85 65
2 0.75 0.79 0.09 191 204 0.70 0.23 101 104
2.25 0 0.74 0.02 145 138 0.78 0.073 120 68
2.25 0.05 0.77 0.02 147 143 0.78 0.07 112 65
2.25 0.1 0.77 0.03 142 118 0.77 0.067 114 71
2.25 0.25 0.78 0.04 166 157 0.75 0.09 112 75
2.25 0.5 0.79 0.03 228 216 0.74 0.11 105 84
2.25 0.75 0.77 0.06 347 390 0.69 0.17 129 135



Simulation conclusions

I Reliable sample size estimates in simulated examples

I Works with small sample size and moderate number of
covariates

I Large standard deviation

I Mid-stream update (not shown) reduces variability and En̂∗
while maintaining operating characteristics



Discussion

I Sample size calculation for personalized medicine is possible

I Many possible criteria for sizing the study, more thought is
needed

I Extending this to the multistage setting without becoming
excessively conservative is an open problem
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