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Basic Setup

• Test hypotheses H1, H2, . . . ,Hn based on their observed
marginal p-values: p1, p2, . . . , pn.

• Label the ordered p-values: p(1) ≤ · · · ≤ p(n) and the
corresponding hypotheses: H(1), . . . ,H(n).

• Denote the corresponding random variables by
P(1) ≤ · · · ≤ P(n).

• Familywise error rate (FWER) strong control (Hochberg &
Tamhane 1987):

FWER = Pr{Reject at least one true Hi} ≤ α,

for all combinations of the true and false Hi’s.
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Hochberg Procedure

• Step-up Procedure: Start by testing H(n). If at the ith step
p(n−i+1) ≤ α/i then stop & reject H(n−i+1), . . . ,H(1); else
accept H(n−i+1) and continue testing.

H(1) H(2) · · · H(n−1) H(n)

p(1) ≤ p(2) ≤ · · · ≤ p(n−1) ≤ p(n)
α
n

α
n−1 · · · α

2
α
1

• Known to control FWER under independence and (certain
types of) positive dependence among the p-values.

• Holm (1979) procedure operates exactly in reverse
(step-down) manner and requires no dependence assumption
(since it is based on the Bonferroni test), but is less powerful.
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Closure Method

• Marcus, Peritz & Gabriel (1976).

• Test all nonempty intersection hypotheses H(I) =
⋂
i∈I Hi,

using local α-level tests where I ⊆ {1, 2, . . . , n}.
• Reject H(I) iff all H(J) for J ⊇ I are rejected, in particular,

reject Hi iff all H(I) with i ∈ I are rejected.

• Strongly controls FWER ≤ α.

• Ensures coherence (Gabriel 1969): If I ⊆ J then acceptance of
H(J) implies acceptance of H(I).

• Stepwise shortcuts to closed MTPs exist under certain
conditions.

• If the Bonferroni test is used as local α-level test then the
resulting shortcut is the Holm step-down procedure.
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Closure Method: Example for n = 3
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Simes Test

• Simes Test: Reject H0 =
⋂n
i=1Hi at level α if

p(i) ≤
iα

n
for some i = 1, . . . , n.

• More powerful than the Bonferroni test.

• Based on the Simes identity: If the Pi’s are independent then
under H0:

Pr

(
P(i) ≤

iα

n
for some i

)
= α.

• Simes test is conservative under (certain types of) positive
dependence: Sarkar & Chang (1997) and Sarkar (1998).

• Simes test is anti-conservative under (certain types of)
negative dependence: Hochberg & Rom (1995), Samuel-Cahn
(1996), Block, Savits & Wang (2008).
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Hommel Procedure Under Negative Dependence

• When the Simes test is used as a local α-level test for all
intersection hypotheses, the exact shortcut to the closure
procedure is the Hommel (1988) multiple test procedure.

• So the Hommel procedure is more powerful than the Holm
procedure.

• Since the Simes test controls α under independence/positive
dependence but not under negative dependence, the Hommel
procedure also controls/does not control FWER under the
same conditions.

• Hochberg derived his procedure as a conservative shortcut to
the exact shortcut to the closure procedure (i.e., Hommel
procedure), so it also controls FWER under
independence/positive dependence.
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Hochberg Procedure Under Negative Dependence

• The common perception is that the Hochberg procedure may
not control FWER under negative dependence.

• So practitioners are reluctant to use it if negative correlations
are expected. They use the less powerful but more generally
applicable Holm procedure.

• But the Hochberg procedure is conservative by construction.

• So, does it control FWER under also under negative
dependence?
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Conservative Simes Test

• Better to think of the Hochberg procedure as an exact
stepwise shortcut to the closure procedure which uses a
conservative Simes local α-level test (Wei 1996).

• Conservative Simes test: Reject H0 =
⋂n
i=1Hi at level α if

p(i) ≤
α

n− i+ 1
for some i = 1, . . . , n.

• It is conservative because α/(n− i+ 1) ≤ iα/n with
equalities iff i = 1 and i = n.

• So the question of FWER control under negative dependence
by the Hochberg procedure reduces to showing

Pr

(
P(i) ≤

α

n− i+ 1
for some i

)
≤ α

under negative dependence.
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Conservative Simes Test

• For n = 2, the exact Simes test and the conservative Simes
test are the same. So both are anti-conservative under
negative dependence.

• Does the conservative Simes test remain conservative under
negative dependence for n > 2?
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Multivariate Uniform Distribution Models for P -Values

• Sarkar’s (1998) method, used by Block & Wang (2008) to
show the anti-conservatism of the Simes test, does not work
for the conservative Simes test since that method requires the
critical constants cn−i+1 used to compare with p(i) to have
the monotonicity property that cn−i+1/i must be
nondecreasing in i.

• But for the conservative Simes test, cn−i+1/i = 1/i(n− i+ 1)
are decreasing (resp., increasing) in i for i ≤ (n+ 1)/2 (resp.,
i > (n+ 1)/2).

• To study the performance of the Simes/conservative Simes
test under negative dependence we chose to use a multivariate
uniform distribution for P -values.

• The distribution should be tractable enough to deal with
ordered correlated multivariate uniform random variables.
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Normal Model

• Let X1, . . . , Xn be multivariate normal with
E(Xi) = 0,Var(Xi) = 1 and Corr(Xi, Xj) = γij
(1 ≤ i < j ≤ n).

• Define Pi = Φ(Xi) where Φ(·) is the standard normal c.d.f.:
one-sided marginal P -value.

• Then Pi ∼ U [0, 1] with ρij = Corr(Pi, Pj) a monotone and
symmetric (around zero) function of γij (1 ≤ i < j ≤ n).

γij = γ 0 0.1 0.3 0.5 0.7 0.9 1

ρij = ρ 0 0.0955 0.2876 0.4826 0.6829 0.8915 1

• This model is not analytically tractable.
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Mixture Model

• U1, . . . , Un i.i.d. U [0, β], V1, . . . , Vn i.i.d. U [β, 1], where
β ∈ (0, 1) is fixed.

• Independent of the Ui’s and Vi’s, W is Bernoulli with
parameter β. Define

Xi = UiW + Vi(1−W ) (1 ≤ i ≤ n).

• Let Yi be independent Bernoulli with parameters πi and define

Pi = XiYi + (1−Xi)(1− Yi) (1 ≤ i ≤ n).

Then the Pi are U [0, 1] distributed with

Corr(Pi, Pj) = ρij = 3β(1−β)(2πi−1)(2πj−1) (1 ≤ i < j ≤ n).

• Note that −3/4 ≤ ρij ≤ +3/4 and ρij > 0 ⇔ πi, πj > 1/2 or
< 1/2.

• This model is also not analytically tractable.
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Ferguson’s Model for n = 2

• Ferguson (1995) Theorem: Suppose X is a continuous
random variable with p.d.f. g(x) on x ∈ [0, 1]. Let the joint
p.d.f. of (P1, P2) be given by

f(p1, p2) =
1

2
[g(|p1−p2|)+g(1−|1−(p1+p2)|)] for p1, p2 ∈ (0, 1).

Then P1, P2 are jointly distributed on the unit square with
U [0, 1] marginals and

ρ = Corr(P1, P2) = 1− 6E(X2) + 4E(X3).
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Ferguson’s Model for n = 2

• We chose

g(x) =

{
U [0, θ] ρ = (1− θ)(1 + θ − θ2) > 0
U [1− θ, 1] ρ = −(1− θ)(1 + θ − θ2) < 0.

• If θ = 1, i.e., X ∼ U [0, 1], then ρ = 0 for both models.

• If θ = 0 then ρ = +1 if g(x) = U [0, θ] and ρ = −1 if
g(x) = U [1− θ, 1]: point mass distributions with all mass at
(0, 0) and (1, 1), respectively.
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Ferguson’s Model for Bivariate Uniform Distribution
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Left Panel: Positive correlation, Right Panel: Negative correlation
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Ferguson’s Model for Multivariate Uniform Distribution

• Define the joint p.d.f. as

f(p1, . . . , pn) =
∑

1≤i<j≤n
wijfij(pi, pj)

for pi, pj ∈ [0, 1] where the wij are the mixing probabilities
which sum to 1.

• We use gij(x) = U [0, θij ] or gij(x) = U [1− θij , 1] for +ve
and −ve correlations, respectively.

• Corr(Pi, Pj) = ρij are given by

ρij = ±wij(1− θij)(1 + θij − θ2ij).
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Type I Error of the Simes Test for n = 2

Theorem: For the Simes test, P = Pr(Type I Error) ≥ α for all
ρ ≤ 0 under the Ferguson model with negative dependence.

maxP =
1

2

(
1 + α−

√
1− 2α+ α2/2

)
> α,

and is achieved at θ =
√

1− 2α+ α2/2. �

• For α = 0.05, maxP = 0.0503 when Corr(P1, P2) = −0.053.
For the bivariate normal model maxP = 0.0501 when
Corr(P1, P2) = −0.184. These excesses are negligible.

• We can choose

c1 = 1, c2 =

(
1 +

√
1− α

1− 1.5α

)−1
<

1

2

to control Pr(Type I Error) ≤ α for all ρ ≤ 0 at a negligible
loss of power.
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Idea of the Proof for n = 2

(a) (b) (c) (d)

f(p1, p2) = 0

f(p1, p2) = 1/2θ

f(p1, p2) = 1/θ

P =


α (a): 0 < θ ≤ 1− 2α

α+ (1−θ−2α)2
4θ (b): 1− 2α < θ ≤ 1− 3

2α

α+
1
2
α2−(1−θ−α)2

4θ (c): 1− 3
2α < θ ≤ 1− 1

2α

α+ (1−θ)2
4θ (d): 1− 1

2α < θ < 1.
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Type I Error of Conservative Simes Test for n = 2
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Plot of type I error vs. Corr(P1, P2) in the bivariate case for
Ferguson’s model (solid curve) and Normal model (dashed curve)
(α = 0.10)
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Type I Error of the Conservative Simes Test for n ≥ 3

Proof of maxP ≤ α for all negative correlations under the
Ferguson model proceeds in two steps.

• First show that the result is true for n = 3. This is quite a
laborious proof.

• Then use an induction argument to extend the result to all
n > 3.
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Idea of the Proof for n = 3

The rejection region
{
p(3) ≤ α/1

}
∪
{
p(2) ≤ α/2

}
∪
{
p(1) ≤ α/3

}
for n = 3:

p3 p1

p2
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Idea of the Proof for n = 3

0 ≤ p3 ≤ α/3 α/3 ≤ p3 ≤ α/2 α/2 ≤ p3 ≤ α α ≤ p3 ≤ 1

• Slice the rejection region along the p3-axis as shown above
and find the probability of each two-dimensional slice using
the results from the n = 2 case.

• This results in nine different expressions depending on the θ
value for the bivariate distribution.

• Show that all nine expressions ≤ α. Hence their weighted sum
(weighted by the probabilities of the slices) is ≤ α.
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Error Rate Control Under Negative Quadrant Dependence

Theorem: If (P1, . . . , Pn) follow a multivariate uniform distribution
which is a mixture of bivariate distributions fij(pi, pj) with mixing
probabilities wij > 0 where all pairs (Pi, Pj) are negatively
quadrant dependent then the conservative Simes test controls the
type I error at level α < 1/2 for n ≥ 4. �

• Negative Quadrant Dependence (Lehmann 1966): Two
random variables, X and Y , are said to be negatively
quadrant dependent if

Pr {(X ≤ x) ∩ (Y ≤ y)} ≤ Pr (X ≤ x) Pr (Y ≤ y) .

• The proof uses an upper bound on P (Type I error) from
Hochberg & Rom (1995).
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Simulation Results

We performed simulations of type I error of the conservative Simes
test for n = 3, 5, 7 for the following cases.

• Equicorrelated normal model for
γ = −0.1/(n− 1),−0.5/(n− 1),−0.9/(n− 1).

• Mixture model with β = 0.1, 0.3, 0.5 and each πi = 0.5± δ
with δ = 0.1, 0.25, 0.4 (more than half of the ρij < 0).

• Product-correlated normal model with the same correlation
matrix as the mixture model.

• Ferguson model with the same correlation matrix as the
mixture model:

• Uniform distribution: gij(x) = U [0, θ] or gij(x) = U [1− θ, 1].
• Beta distribution: gij(x) = Beta(r, s).

• All simulations show that the conservative Simes test and
hence the Hochberg procedure remain conservative under
negative dependence for n ≥ 3.
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Conclusions

• Showed that the Simes test is anti-conservative under
negative dependence using Ferguson’s model for n = 2. The
amount of anti-conservatism is negligibly small.

• Showed that the critical constant c2 of this test can be made
slightly smaller than 1/2 to control P (Type I error) with
negligible loss of power.

• Showed that the conservative Simes test remains conservative
under negative dependence using Ferguson’s model for n ≥ 3.
The amount of conservatism increases with n.

• Future research: Show that the conservative Simes test
remains conservative under other negative dependence
models, especially under the normal model.
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