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Tailored Therapies

Company Confidential
Copyright © 2007 Eli Lilly and Company
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Definition: Enhancing the Value 
Proposition for the Patient

One size fits allOne size fits all Targeted TherapyTargeted Therapy

“Providing meaningful improved health outcomes for patients by delivering 
the right drug at the right dose at the right time.”

Degree of Tailoring
Lower predictability of health outcomes 
(e.g. most pharma products today)

Higher predictability of health outcomes 
(e.g. oncology products comprising drug 

and companion diagnostic)assess spectrum of patient 
response to therapy; 

stratify patient populations; 
optimize benefit/risk.

Goal: Improve individual patient outcomes and health outcome predictability
through tailoring drug, dose, timing of treatment, and relevant information.

Goal: Improve individual patient outcomes and health outcome predictability
through tailoring drug, dose, timing of treatment, and relevant information.
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Tailored Therapies

Company Confidential
Copyright © 2007 Eli Lilly and Company

9
IOM 37th Annual Meeting – 10-8-07

Can apply one or more scenarios to a compound.  
Scenarios can often be interdependent.

Type of Tailoring

Drug

Patient

Dose

Time

Information/ 
Tools

Type of Tailoring: Several Options 
Exist

Engineering therapies with a specific patient subpopulation in 
mind.

Identifying patient best suited for drug; i.e. identifying those
patients whom benefits outweigh risks.  Special case: 
Identifying responders for targeted therapies.

Optimize dosing regimen for patient subpopulation(s) to 
achieve optimal benefit/risk.

Identify time to intervene during disease progression, time to 
complete therapy, or time to alter treatment regimen. 

Accommodate info for patient diversity, questions specific to 
payers or providers, or provide tools to meet customer needs; 
improve adherence.

One size fits allOne size fits all Degree of Tailoring Targeted TherapyTargeted Therapy

Lower predictability of health outcomes Higher predictability of health outcomes 

Herceptin

Insulin

Xigris

Forteo

BiDil
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Dynamic Treatment Regime

At any decision point

Input: available information on the patient to that point.
Output: next treatment.

Dynamic treatment regimes (DTRs) are sequential decision
rules for individual patients that can adapt over time to an
evolving illness.

One decision rule for each time point.
Each rule: recommends the treatment action at that point as a
function of accrued historical information.
The rules determine an algorithm for treating any patient.
Aim to optimize some cumulative clinical outcome.
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Why Do We Need DTRs?

Heterogeneity

Multiple active treatments available.

Heterogeneity in responses:

1 Across patients: what works for one
may not work for another.

2 Within a patient: what works now
may not work later.

Chronic or Waxing and Waning Course

More is not always better
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DTR Goals

Learn adaptive treatment strategies: tailor (sequences of)
treatments based on patient characteristics.

Motivations
Tailoring Therapies and Delayed Effects
Dynamic Treatment Regime & Biomarker Adaptive Designs

Tailored Therapies

Concepts & Tools

Symptoms
Demographics
Disease history
Biomarkers
Imaging
Bioinformatics
Pharmacogenomics

4

Motivations
Tailoring Therapies and Delayed Effects
Dynamic Treatment Regime & Biomarker Adaptive Designs

Tailored Therapies

Concepts & Tools

Symptoms
Demographics
Disease history
Biomarkers
Imaging
Bioinformatics
Pharmacogenomics

4

Maximize the benefit of dynamic treatment regimes:

Well chosen tailoring variables.

Well conceived decision rules.
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Examples: Late Stage Non-Small Cell Lung Cancer

In treating advanced non-small cell lung cancer, patients typically
experience two or more lines of treatment, and many studies
demonstrate that three lines of treatment can improve survival for
patients.

1st-line 2nd-line 3rd-line

1

Problem of Interest

Can we improve survival by personalizing the treatment at each
decision point (at the beginning of a treatment line) based on
prognostic data?
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NSCLC: Important clinical questions

1 Among many approved 1st-line treatments, what treatment to
administer?

2 Then, at the end of the 1st-line treatment
Among approved 2nd-line treatments, what treatment to
administer?
When to begin the 2nd-line of treatment?

3 Goal: Improve survival.

Possible
treatments

Possible
treatments
and initial
timings

1st-line 2nd-line

Immediate Progression Death

1
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Sequential Multiple Assignment Randomized Trials
(SMARTs) for DTRs

These are multi-stage trials; each stage corresponds to a critical
decision and a randomization takes place at each critical decision.

Goal

Inform the construction of dynamic treatment regimes.

13/ 33



Dynamic Treatment Regime

Observe data on n individuals, T stages for each individual,

X1,A1,R1,X2,A2, . . . ,XT ,AT ,RT ,XT+1

Xt : Patient covariates available at stage t.
At : Treatment at stage t, At ∈ {−1, 1}.
Rt : Outcome following stage t.
Ht : History available at stage t, Ht = {X1,A1,R1, . . . ,At−1,Rt−1,Xt}.

A DTR is a sequence of decision rules:

D = (d1(H1), . . . , dT (HT )), dt(Ht) ∈ {−1, 1}.

The regime, D, should have high Value: VD = ED (
∑

t Rt)

The value corresponds to the average outcome if all patients
are assigned treatment according to D
Optimal decision rule Dopt satisfies

ED
opt

(
∑
t

Rt) = sup
D

ED(
∑
t

Rt)
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Dynamic Programming

Estimate D∗ if one knows the complete probability
distribution of data generation.

H0

H1 HT−1 HT HT+1

A0 A1 AT−1 AT

Q0 = r0 + maxa1 Q1

Q1 = r1 + maxa2 Q2

QT−1 = rT−1 + maxaT QT

QT = rT

r0 r1 rT−1 rT
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Constructing a DTR from Data: Q-learning

Data-driven analog of dynamic programming.

Backwards and recursively estimates the following Q-function:

Qj(hj , aj) = E (Rj+ max
aj+1∈{−1,1}

Qj+1(Hj+1, aj+1)|Hj = hj ,Aj = aj),

where QT+1 = 0, and hj ∈ Oj , aj ∈ Aj , j = 1, . . . ,T .

The estimated optimal sequence of decision rules

d̂j(hj) = argmax
aj∈{−1,1}

Q̂j(hj , aj).

Q learning with regression: estimate the Q-functions from
data using regression and then find the optimal DTR.

An extension of regression to sequential treatments.
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Constructing a DTR from Data: Q-learning

First, do a regression at stage 2 to learn about more deeply
tailored second-line treatment.

Outcome: second stage outcomes;

Predictors: history information: characteristics of the
participant at baseline and outcome during first-line treatment

Second, do a regression to learn about more deeply tailored
first-line treatment.

Outcome: an estimate of the outcome under the second-line
treatment that yields the best outcome.
—- already taken into account future optimal treatment;

Predictors: baseline characteristics
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Q-Learning: Two Stages

Two stages, t = 1, 2; binary treatments denoted by At ∈ {0, 1},
final outcome R, Ht features of patient history:

Stage 2 regression: Regress R on H2 to obtain
Q̂2(H2,A2) = β̂T21H2 + β̂T22H2A2

d̂2(H2) = arg maxa2∈{0,1} Q̂2(H2, a2) = arg maxa2∈{0,1} β̂
T
22H2a2

R̃ = β̂T21H2 + maxa2∈{0,1} β̂
T
22H2a2

R̃ is a predictor of maxa2∈{0,1}Q2(H2, a2)

Stage 1 regression: Regress R̃ on H1 to obtain
Q̂1(H1,A1) = β̂T11H1 + β̂T12H1A1

d̂1(H1) = arg maxa1∈{0,1} Q̂1(H1, a1) = arg maxa1∈{0,1} β̂
T
12H1a1
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Q-learning Positives

Natural approximate dynamic programming approach

Linear models are common but non-essential

Parsimonious and interpretable
More flexible models can be used to define the Q-functions
(e.g., boosting, random forests, etc.)

Regression models are well-understood

Diagnostic and validation tools exist
EDA is straightforward
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Q-learning . . . Opportunities

Non-smooth non-monotone max-operator

Linear models are rarely correctly specified for Q1

Non-smoothness induces non-regularity so that standard
methods for inference, e.g., the bootstrap and taylor series
arguments, are invalid
Non-monotone transformations are difficult to model

Q-learning indirectly estimates dopt through the conditional
mean functions

Recall, dopt
t = arg maxat Qk(ht , at) which depends only on the

sign of Qt(ht , 1)− Qt(ht , 0).
Analog in classification: logistic classification vs. large-margin
classification
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Linear Models are Rarely Correctly Specified for Q1

Toy generative model

X1 ∼ Normal(0, 1), ξ ∼ Normal(0, 1/2),
X2 = ζX1 + ξ, At ∼ Uniform{0, 1}, t = 1, 2,
φ ∼ Normal(0, 1/2), R = 1.25A1A2 + A2X2 − A1X1 + φ,

ζ governs the correlation between X1 and X2

Linear model is correct for Q2

Q2(H2,A2) = 1.25A1A2 + A2X2 − A2X1

Nonlinear model required for Q1

Q1(H1,A1) =
1

2
√

2π
exp

{
−2(1.25A1 + ζX1)2

}
+ (1.25A1 + ζX1)Φ (2(1.25A1 + ζX1))
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Linear Models are Rrarely . . . cont’d

Nonlinear model required for Q1

Q1(H1,A1) =
1

2
√

2π
exp

{
−2(1.25A1 + ζX1)2

}
+ (1.25A1 + ζX1)Φ (2(1.25A1 + ζX1))

This is an idealized setting, yet:

Linear model assumption holds only when ζ = 0, but this is
unlikely in practice
Even seasoned data analysts would likely have trouble
identifying the correct functional form given limited data

23/ 33



Non-smooth Non-monotone Transformations

Recall R̃ = maxa2 Q̂2(H2, a2) = β̂T21H21 + max(β̂T22H22, 0)

Before maximization
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Non-smooth Non-monotone Transformations

Recall R̃ = maxa2 Q̂2(H2, a2) = β̂T21H21 + max(β̂T22H22, 0)

Before maximization
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Non-smooth Non-monotone Transformations

Recall R̃ = maxa2 Q̂2(H2, a2) = β̂T21H21 + max(β̂T22H22, 0)

Before maximization

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●
●

●

●●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

−3 −2 −1 0 1 2 3 4

−
4

−
2

0
2

4

H1

β̂ 2T
H

22

●

A1 = 1
A1 = −1

After maximization

●

●
●

● ●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3 4

0
2

4
6

H1

Ŷ
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Q-learning Indirectly Estimates dopt

dopt
t (ht) = arg maxat Qt(ht , at) = 1Qt(hk ,1)−Qt(ht ,0)>0

Thus, dopt
t (ht) depends only on the sign of contrast

Qt(ht , 1)− Qt(ht , 0)

Q-learning estimates Qt(ht , at), hence does not directly target
dopt

A-learning (Murphy, 2003) targets Qt(ht , 1)− Qt(ht , 0), is
closer but still indirect

Recent classification-based estimators of Zhao et al. (2012)
and Zhang et al. (2012) directly target dopt

25/ 33



Table of Contents

1 Overview: Dynamic Treatment Regimes

What are DTRs?
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Value Maximization Methods

Augmented inverse probability-weighting

Marginal structural mean models

Outcome weighted learning
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Classification Estimators: One Stage

For clarity, simplify development of Zhao et al. (2012)

Assume R is nonnegative

Assume A are randomly assigned, recoded to take values in
{−1, 1}

For any policy d the value equals

EdR = E

[
I (A = d(X ))

P(A|X )
R

]
.
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Outcome Weighted Learning (OWL)

Optimal Individualized Treatment Rule d∗

Maximize the value Minimize the risk

E

[
I (A = d(X ))

P(A|X )
R

]
E

[
I (A 6= d(X ))

P(A|X )
R

]

For any rule d , d(X ) = sign(f (X )) for some function f .

Empirical approximation to the risk function:

n−1
n∑

i=1

Ri

P(Ai |Xi )
I (Ai 6= sign(f (Xi ))).

Computation challenges: non-convexity and discontinuity of
0-1 loss.
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Convex Surrogate Loss: Hinge Loss

−3 −2 −1 0 1 2 3

0
1

2
3

4

Af

L
o

ss

0−1 Loss
Hinge Loss

Hinge Loss: φ(Af (X )) = (1− Af (X ))+, where x+ = max(x , 0)
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Outcome Weighted Support Vector Machine (SVM)

Objective Function: Regularization Framework

min
f

{
1

n

n∑
i=1

Ri

P(Ai |Xi )
φ(Ai f (Xi )) + λn‖f ‖2

}
. (1)

‖f ‖ is some norm for f , and λn controls the severity of the
penalty on the functions.

A linear decision rule: f (X ) = XTβ + β0, with ‖f ‖ as the
Euclidean norm of β.

Estimated individualized treatment rule:

d̂n(X ) = sign(f̂n(X )),

where f̂n is the solution to (1).
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Backward Outcome Weighted Learning (BOWL)

This is similar to Q-learning but we target value functions
directly.

Assume P(A1 = 1) = P(A2 = 1) = 1/2, then

VD = 4E [(R1 + R2)I (A1 = D1(H1))I (A2 = D2(H2))].

At Stage 2, we obtain D̂2(H2) with objective to minimize

E (R2I (A2 6= D2(H2)))

using OWL.

At Stage 1, we obtain D̂1(H1) with objective to minimize

E ([(R1 + R2)I (A2 = D̂2(H2))]I (A1 6= D1(H1))),

using OWL.

The estimation restricted to the subset of patients who have been
assigned to the estimated optimal treatments in stage 2.
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Wrap-up

This is an extremely active area of research

Tools for estimation and inference exist and are continually
being improved

There is no panacea, choosing the proper statistical tool
depends critically on the goals of the analysis
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