Estimation of Optimal Dynamic Treatment Regimes

Yingqi Zhao
University of Wisconsi-Madison 2014 IMPACT Symposium III

November 21, 2014

Acknowledgements

- Joint work with Eric B. Laber.
- Symposium Organizers
(1) Overview: Dynamic Treatment Regimes
- What are DTRs?
- Why use DTRs?
(2) Constructing Optimal DTRs from Data: Q-learning
- Introduction to Q-learning
- Q-learning: Pros and Cons
(3) Value Maximization Methods

Tailored Therapies

"Providing meaningful improved health outcomes for patients by delivering the right drug at the right dose at the right time."

Goal: Improve individual patient outcomes and health outcome predictability through tailoring drug, dose, timing of treatment, and relevant information.
One size fits all

Lower predictability of health outcomes
(e.g. most pharma products today)

Degree of Tailoring
assess spectrum of patient
response to therapy;
stratify patient populations;
optimize benefit/risk.

Tailored Therapies

Dynamic Treatment Regime

- At any decision point
- Input: available information on the patient to that point.
- Output: next treatment.
- Dynamic treatment regimes (DTRs) are sequential decision rules for individual patients that can adapt over time to an evolving illness.
- One decision rule for each time point.
- Each rule: recommends the treatment action at that point as a function of accrued historical information.
- The rules determine an algorithm for treating any patient.
- Aim to optimize some cumulative clinical outcome.
(1) Overview: Dynamic Treatment Regimes
- What are DTRs?
- Why use DTRs?
(2) Constructing Optimal DTRs from Data: Q-learning
- Introduction to Q-learning
- Q-learning: Pros and Cons
(3) Value Maximization Methods

Why Do We Need DTRs?

- Heterogeneity

- Multiple active treatments available.
- Heterogeneity in responses:
(1) Across patients: what works for one may not work for another.
(2) Within a patient: what works now may not work later.
- Chronic or Waxing and Waning Course
- More is not always better

DTR Goals

Learn adaptive treatment strategies: tailor (sequences of) treatments based on patient characteristics.

One Size Fits All	Degree of Tailoring	Targeted
Once and for All r Degree of Tailoring	Dime Varing Characteristics	Dynamic

Maximize the benefit of dynamic treatment regimes:

- Well chosen tailoring variables.
- Well conceived decision rules.

Examples: Late Stage Non-Small Cell Lung Cancer

In treating advanced non-small cell lung cancer, patients typically experience two or more lines of treatment, and many studies demonstrate that three lines of treatment can improve survival for patients.

NSCLC: Important clinical questions

(1) Among many approved 1st-line treatments, what treatment to administer?
(2) Then, at the end of the 1st-line treatment

- Among approved 2nd-line treatments, what treatment to administer?
- When to begin the 2nd-line of treatment?
(3) Goal: Improve survival.

(1) Overview: Dynamic Treatment Regimes
- What are DTRs?
- Why use DTRs?
(2) Constructing Optimal DTRs from Data: Q-learning
- Introduction to Q-learning
- Q-learning: Pros and Cons
(3) Value Maximization Methods

Sequential Multiple Assignment Randomized Trials (SMARTs) for DTRs

These are multi-stage trials; each stage corresponds to a critical decision and a randomization takes place at each critical decision.

Goal

Inform the construction of dynamic treatment regimes.

Dynamic Treatment Regime

Observe data on n individuals, T stages for each individual,

$$
X_{1}, A_{1}, R_{1}, X_{2}, A_{2}, \ldots, X_{T}, A_{T}, R_{T}, X_{T+1}
$$

X_{t} : Patient covariates available at stage t.
A_{t} : Treatment at stage $t, A_{t} \in\{-1,1\}$.
R_{t} : Outcome following stage t.
H_{t} : History available at stage $t, H_{t}=\left\{X_{1}, A_{1}, R_{1}, \ldots, A_{t-1}, R_{t-1}, X_{t}\right\}$.
A DTR is a sequence of decision rules:

$$
\mathcal{D}=\left(d_{1}\left(H_{1}\right), \ldots, d_{T}\left(H_{T}\right)\right), d_{t}\left(H_{t}\right) \in\{-1,1\} .
$$

- The regime, \mathcal{D}, should have high Value: $V^{\mathcal{D}}=E^{\mathcal{D}}\left(\sum_{t} R_{t}\right)$
- The value corresponds to the average outcome if all patients are assigned treatment according to \mathcal{D}
- Optimal decision rule $\mathcal{D}^{\text {opt }}$ satisfies

$$
E^{\mathcal{D}^{\text {opt }}}\left(\sum_{t} R_{t}\right)=\sup _{\mathcal{D}} E^{\mathcal{D}}\left(\sum_{t} R_{t}\right)
$$

Dynamic Programming

- Estimate \mathcal{D}^{*} if one knows the complete probability distribution of data generation.

Dynamic Programming

- Estimate \mathcal{D}^{*} if one knows the complete probability distribution of data generation.

Dynamic Programming

- Estimate \mathcal{D}^{*} if one knows the complete probability distribution of data generation.

Dynamic Programming

- Estimate \mathcal{D}^{*} if one knows the complete probability distribution of data generation.

Dynamic Programming

- Estimate \mathcal{D}^{*} if one knows the complete probability distribution of data generation.

Dynamic Programming

- Estimate \mathcal{D}^{*} if one knows the complete probability distribution of data generation.

Dynamic Programming

- Estimate \mathcal{D}^{*} if one knows the complete probability distribution of data generation.

H_{T}

Dynamic Programming

- Estimate \mathcal{D}^{*} if one knows the complete probability distribution of data generation.

Dynamic Programming

- Estimate \mathcal{D}^{*} if one knows the complete probability distribution of data generation.

Dynamic Programming

- Estimate \mathcal{D}^{*} if one knows the complete probability distribution of data generation.

Dynamic Programming

- Estimate \mathcal{D}^{*} if one knows the complete probability distribution of data generation.

Dynamic Programming

- Estimate \mathcal{D}^{*} if one knows the complete probability distribution of data generation.

Dynamic Programming

- Estimate \mathcal{D}^{*} if one knows the complete probability distribution of data generation.

Constructing a DTR from Data: Q-learning

- Data-driven analog of dynamic programming.
- Backwards and recursively estimates the following Q-function:

$$
Q_{j}\left(h_{j}, a_{j}\right)=E\left(R_{j}+\max _{a_{j+1} \in\{-1,1\}} Q_{j+1}\left(H_{j+1}, a_{j+1}\right) \mid H_{j}=h_{j}, A_{j}=a_{j}\right),
$$

where $Q_{T+1}=0$, and $h_{j} \in \mathcal{O}_{j}, a_{j} \in \mathcal{A}_{j}, j=1, \ldots, T$.

- The estimated optimal sequence of decision rules

$$
\hat{d}_{j}\left(h_{j}\right)=\underset{a_{j} \in\{-1,1\}}{\operatorname{argmax}} \hat{Q}_{j}\left(h_{j}, a_{j}\right) .
$$

- Q learning with regression: estimate the Q-functions from data using regression and then find the optimal DTR.
- An extension of regression to sequential treatments.

Constructing a DTR from Data: Q-learning

- First, do a regression at stage 2 to learn about more deeply tailored second-line treatment.
- Outcome: second stage outcomes;
- Predictors: history information: characteristics of the participant at baseline and outcome during first-line treatment
- Second, do a regression to learn about more deeply tailored first-line treatment.
- Outcome: an estimate of the outcome under the second-line treatment that yields the best outcome.
-- already taken into account future optimal treatment;
- Predictors: baseline characteristics

Q-Learning: Two Stages

Two stages, $t=1,2$; binary treatments denoted by $A_{t} \in\{0,1\}$, final outcome R, H_{t} features of patient history:

- Stage 2 regression: Regress R on H_{2} to obtain

$$
\hat{Q}_{2}\left(H_{2}, A_{2}\right)=\hat{\beta}_{21}^{T} H_{2}+\hat{\beta}_{22}^{T} H_{2} A_{2}
$$

- $\hat{d}_{2}\left(H_{2}\right)=\arg \max _{a_{2} \in\{0,1\}} \hat{Q}_{2}\left(H_{2}, a_{2}\right)=\arg \max _{a_{2} \in\{0,1\}} \hat{\beta}_{22}^{T} H_{2} a_{2}$

Q-Learning: Two Stages

Two stages, $t=1,2$; binary treatments denoted by $A_{t} \in\{0,1\}$, final outcome R, H_{t} features of patient history:

- Stage 2 regression: Regress R on H_{2} to obtain

$$
\hat{Q}_{2}\left(H_{2}, A_{2}\right)=\hat{\beta}_{21}^{T} H_{2}+\hat{\beta}_{22}^{T} H_{2} A_{2}
$$

- $\hat{d}_{2}\left(H_{2}\right)=\arg \max _{a_{2} \in\{0,1\}} \hat{Q}_{2}\left(H_{2}, a_{2}\right)=\arg \max _{a_{2} \in\{0,1\}} \hat{\beta}_{22}^{T} H_{2} a_{2}$
- $\tilde{R}=\hat{\beta}_{21}^{T} H_{2}+\max _{a_{2} \in\{0,1\}} \hat{\beta}_{22}^{T} H_{2} a_{2}$
- \tilde{R} is a predictor of $\max _{a_{2} \in\{0,1\}} Q_{2}\left(H_{2}, a_{2}\right)$

Q-Learning: Two Stages

Two stages, $t=1,2$; binary treatments denoted by $A_{t} \in\{0,1\}$, final outcome R, H_{t} features of patient history:

- Stage 2 regression: Regress R on H_{2} to obtain

$$
\hat{Q}_{2}\left(H_{2}, A_{2}\right)=\hat{\beta}_{21}^{T} H_{2}+\hat{\beta}_{22}^{T} H_{2} A_{2}
$$

- $\hat{d}_{2}\left(H_{2}\right)=\arg \max _{a_{2} \in\{0,1\}} \hat{Q}_{2}\left(H_{2}, a_{2}\right)=\arg \max _{a_{2} \in\{0,1\}} \hat{\beta}_{22}^{T} H_{2} a_{2}$
- $\tilde{R}=\hat{\beta}_{21}^{T} H_{2}+\max _{a_{2} \in\{0,1\}} \hat{\beta}_{22}^{T} H_{2} a_{2}$
- \tilde{R} is a predictor of $\max _{\mathrm{a}_{2} \in\{0,1\}} Q_{2}\left(H_{2}, a_{2}\right)$
- Stage 1 regression: Regress \tilde{R} on H_{1} to obtain

$$
\begin{aligned}
\hat{Q}_{1}\left(H_{1}, A_{1}\right) & =\hat{\beta}_{11}^{T} H_{1}+\hat{\beta}_{12}^{T} H_{1} A_{1} \\
\bullet \hat{d}_{1}\left(H_{1}\right) & =\arg \max _{a_{1} \in\{0,1\}} \hat{Q}_{1}\left(H_{1}, a_{1}\right)=\arg \max _{a_{1} \in\{0,1\}} \hat{\beta}_{12}^{T} H_{1} a_{1}
\end{aligned}
$$

(1) Overview: Dynamic Treatment Regimes

- What are DTRs?
- Why use DTRs?
(2) Constructing Optimal DTRs from Data: Q-learning
- Introduction to Q-learning
- Q-learning: Pros and Cons
(3) Classification Perspective for Estimating Optimal DTRs

Q-learning Positives

- Natural approximate dynamic programming approach
- Linear models are common but non-essential
- Parsimonious and interpretable
- More flexible models can be used to define the Q-functions (e.g., boosting, random forests, etc.)
- Regression models are well-understood
- Diagnostic and validation tools exist
- EDA is straightforward

Q-learning ... Opportunities

- Non-smooth non-monotone max-operator
- Linear models are rarely correctly specified for Q_{1}
- Non-smoothness induces non-regularity so that standard methods for inference, e.g., the bootstrap and taylor series arguments, are invalid
- Non-monotone transformations are difficult to model
- Q-learning indirectly estimates $d^{\text {opt }}$ through the conditional mean functions
- Recall, $d_{t}^{\text {opt }}=\arg \max _{a_{t}} Q_{k}\left(h_{t}, a_{t}\right)$ which depends only on the sign of $Q_{t}\left(h_{t}, 1\right)-Q_{t}\left(h_{t}, 0\right)$.
- Analog in classification: logistic classification vs. large-margin classification

Linear Models are Rarely Correctly Specified for Q_{1}

- Toy generative model

$$
\begin{array}{ll}
X_{1} \sim \operatorname{Normal}(0,1), & \xi \sim \operatorname{Normal}(0,1 / 2) \\
X_{2}=\zeta X_{1}+\xi, & A_{t} \sim \operatorname{Uniform}\{0,1\}, t=1,2 \\
\phi \sim \operatorname{Normal}(0,1 / 2), & R=1.25 A_{1} A_{2}+A_{2} X_{2}-A_{1} X_{1}+\phi
\end{array}
$$

ζ governs the correlation between X_{1} and X_{2}

- Linear model is correct for Q_{2}

$$
Q_{2}\left(H_{2}, A_{2}\right)=1.25 A_{1} A_{2}+A_{2} X_{2}-A_{2} X_{1}
$$

- Nonlinear model required for Q_{1}

$$
\begin{aligned}
Q_{1}\left(H_{1}, A_{1}\right)=\frac{1}{2 \sqrt{2 \pi}} & \exp \left\{-2\left(1.25 A_{1}+\zeta X_{1}\right)^{2}\right\} \\
& +\left(1.25 A_{1}+\zeta X_{1}\right) \Phi\left(2\left(1.25 A_{1}+\zeta X_{1}\right)\right)
\end{aligned}
$$

Linear Models are Rrarely . . . cont'd

- Nonlinear model required for Q_{1}

$$
\begin{aligned}
Q_{1}\left(H_{1}, A_{1}\right)=\frac{1}{2 \sqrt{2 \pi}} & \exp \left\{-2\left(1.25 A_{1}+\zeta X_{1}\right)^{2}\right\} \\
& +\left(1.25 A_{1}+\zeta X_{1}\right) \Phi\left(2\left(1.25 A_{1}+\zeta X_{1}\right)\right)
\end{aligned}
$$

- This is an idealized setting, yet:
- Linear model assumption holds only when $\zeta=0$, but this is unlikely in practice
- Even seasoned data analysts would likely have trouble identifying the correct functional form given limited data

Non-smooth Non-monotone Transformations

- Recall $\tilde{R}=\max _{a_{2}} \hat{Q}_{2}\left(H_{2}, a_{2}\right)=\hat{\beta}_{21}^{T} H_{21}+\max \left(\hat{\beta}_{22}^{T} H_{22}, 0\right)$

Non-smooth Non-monotone Transformations

- Recall $\tilde{R}=\max _{a_{2}} \hat{Q}_{2}\left(H_{2}, a_{2}\right)=\hat{\beta}_{21}^{T} H_{21}+\max \left(\hat{\beta}_{22}^{T} H_{22}, 0\right)$

Before maximization

Non-smooth Non-monotone Transformations

- Recall $\tilde{R}=\max _{a_{2}} \hat{Q}_{2}\left(H_{2}, a_{2}\right)=\hat{\beta}_{21}^{T} H_{21}+\max \left(\hat{\beta}_{22}^{T} H_{22}, 0\right)$

Before maximization

H_{1}

After maximization

Q-learning Indirectly Estimates dopt

- $d_{t}^{\text {opt }}\left(h_{t}\right)=\arg \max _{a_{t}} Q_{t}\left(h_{t}, a_{t}\right)=\mathbf{1}_{Q_{t}\left(h_{k}, 1\right)-Q_{t}\left(h_{t}, 0\right)>0}$
- Thus, $d_{t}^{\text {opt }}\left(h_{t}\right)$ depends only on the sign of contrast $Q_{t}\left(h_{t}, 1\right)-Q_{t}\left(h_{t}, 0\right)$
- Q-learning estimates $Q_{t}\left(h_{t}, a_{t}\right)$, hence does not directly target $d^{\text {opt }}$
- A-learning (Murphy, 2003) targets $Q_{t}\left(h_{t}, 1\right)-Q_{t}\left(h_{t}, 0\right)$, is closer but still indirect
- Recent classification-based estimators of Zhao et al. (2012) and Zhang et al. (2012) directly target $d^{\text {opt }}$
(1) Overview: Dynamic Treatment Regimes
- What are DTRs?
- Why use DTRs?
(2) Constructing Optimal DTRs from Data: Q-learning
- Introduction to Q-learning
- Q-learning: Pros and Cons
(3) Value Maximization Methods

Value Maximization Methods

- Augmented inverse probability-weighting
- Marginal structural mean models
- Outcome weighted learning

Classification Estimators: One Stage

- For clarity, simplify development of Zhao et al. (2012)
- Assume R is nonnegative
- Assume A are randomly assigned, recoded to take values in $\{-1,1\}$
- For any policy d the value equals

$$
E^{d} R=E\left[\frac{I(A=d(X))}{P(A \mid X)} R\right] .
$$

Outcome Weighted Learning (OWL)

Optimal Individualized Treatment Rule d^{*}

Maximize the value Minimize the risk

$$
E\left[\frac{I(A=d(X))}{P(A \mid X)} R\right] \quad E\left[\frac{I(A \neq d(X))}{P(A \mid X)} R\right]
$$

- For any rule $d, d(X)=\operatorname{sign}(f(X))$ for some function f.
- Empirical approximation to the risk function:

$$
n^{-1} \sum_{i=1}^{n} \frac{R_{i}}{P\left(A_{i} \mid X_{i}\right)} I\left(A_{i} \neq \operatorname{sign}\left(f\left(X_{i}\right)\right)\right)
$$

- Computation challenges: non-convexity and discontinuity of 0-1 loss.

Convex Surrogate Loss: Hinge Loss

Hinge Loss: $\phi(\operatorname{Af}(X))=(1-\operatorname{Af}(X))^{+}$, where $x^{+}=\max (x, 0)$

Outcome Weighted Support Vector Machine (SVM)

Objective Function: Regularization Framework

$$
\begin{equation*}
\min _{f}\left\{\frac{1}{n} \sum_{i=1}^{n} \frac{R_{i}}{P\left(A_{i} \mid X_{i}\right)} \phi\left(A_{i} f\left(X_{i}\right)\right)+\lambda_{n}\|f\|^{2}\right\} \tag{1}
\end{equation*}
$$

- $\|f\|$ is some norm for f, and λ_{n} controls the severity of the penalty on the functions.
- A linear decision rule: $f(X)=X^{\top} \beta+\beta_{0}$, with $\|f\|$ as the Euclidean norm of β.
- Estimated individualized treatment rule:

$$
\hat{d}_{n}(X)=\operatorname{sign}\left(\hat{f}_{n}(X)\right)
$$

where \hat{f}_{n} is the solution to (1).

Backward Outcome Weighted Learning (BOWL)

- This is similar to Q-learning but we target value functions directly.
- Assume $P\left(A_{1}=1\right)=P\left(A_{2}=1\right)=1 / 2$, then

$$
\mathcal{V}_{\mathcal{D}}=4 E\left[\left(R_{1}+R_{2}\right) /\left(A_{1}=\mathcal{D}_{1}\left(H_{1}\right)\right) I\left(A_{2}=\mathcal{D}_{2}\left(H_{2}\right)\right)\right]
$$

- At Stage 2, we obtain $\hat{\mathcal{D}}_{2}\left(\mathrm{H}_{2}\right)$ with objective to minimize

$$
E\left(R_{2} I\left(A_{2} \neq \mathcal{D}_{2}\left(H_{2}\right)\right)\right)
$$

using OWL.

- At Stage 1, we obtain $\hat{\mathcal{D}}_{1}\left(H_{1}\right)$ with objective to minimize

$$
E\left(\left[\left(R_{1}+R_{2}\right) /\left(A_{2}=\hat{\mathcal{D}}_{2}\left(H_{2}\right)\right)\right] I\left(A_{1} \neq \mathcal{D}_{1}\left(H_{1}\right)\right)\right)
$$

using OWL.
The estimation restricted to the subset of patients who have been assigned to the estimated optimal treatments in stage 2.

Wrap-up

- This is an extremely active area of research
- Tools for estimation and inference exist and are continually being improved
- There is no panacea, choosing the proper statistical tool depends critically on the goals of the analysis

